INFLUENCE OF EXB DRIFT WAVE INSTABLITY IN HOLLOW MAGNETRON SPUTTERING PARAMETERS

Authors

  • Alaa.K. Bard Physics Dep., College of Science, University of Baghdad, Baghdad, Iraq
  • Qusay. A. Abbas Physics Dep., College of Science, University of Baghdad, Baghdad, Iraq

Keywords:

Cylindrical magnetron, hollow magnetron, plasma parameters

Abstract

In the present paper, the effect of the EXB drift wave instability on the hollow magnetron sputtering parameter in the present of axial magnetic field was described in details. The plasma parameters of the normal glow discharge region are diagnostic. The discharge properties were examined using spectroscopic measurements of the plasma created inside the chamber and the Boltzmann diagram to determine the electron temperature. The results showed that adjusting the coil current changes the discharge properties. The properties of the plasma increase with the rise in the coil current, electron temperature (Te), Debye length (D) and electron number density (ne(.

References

Paschen F and Heliumlinien B 1916 Ann. Phys. 355 901

Hagelaar G J M, Mihailova D B and van Dijk J 2010 J. Phys. D:Appl. Phys. 43 465204

Duquette D W and Lawler J E 1982 Phys. Rev. A 26 330

Ishikawa D and Hasegawa S 2019 J. Spectrosc. 2019 1–6

Thornton J A and Penfold A S 1979 Cylindrical magnetron sputtering Thin Film Processes ed J L Vossen and W Kern (London: Academic) pp 75–113

Petrov I G, Kourtev J S and Orlinov V I 1986 An estimation for the possibilities of the cylindrical magnetron systems for coating of wires Bulg. J. Phys. 13 273–9

Kaneko T and Nittono O 1997 Improved design of inverted magnetrons used for deposition of thin films on wires Surf. Coat. Technol. 90 268–74

Amberg M, Geerk J, Keller K and Fischer A 2004 Design, characterisation and operation of an inverted cylindrical magnetron for metal deposition Plasma Devices Oper.12,86-175.

Glocker D A 1995 Principles and applications of hollow cathode magnetron sputtering sources Soc. Vacuum Coaters 38 298–302.

Siegrfired D E, Cook D and Glocker D 1996 Reactive cylindrical magnetron deposition of Titanium nitride and zirconium nitride films Soc. Vacuum Coaters 39 97–101.

Koch H, Friedrich L J, Hinkel V, Ludwig F, Politt B and Schurig T 1991 J. Vac. Sci. Technol. A 9 2374.

Jacobsen H 2007 Integration von piezoelektrischen Dünnschichten in einen MEMS kompatiblen Prozessablauf aufWaferebene PhD Thesis (Christian-Albrechts-Universit¨atzu Kiel, Germany)

Ellmer K 2008 Low Temperature Plasmas ed et al (New York: Wiley) p 675

Gudmundsson J T 2020 Plasma Sources Sci. Technol. 29 113001.

John S. Chapin, Boulder, Colo, “Sputtering Process and Apparatus”, United States Patent, 4,166,018”,Aug. 1979.

P.J. Kelly, R.D. Arnell, “Magnetron sputtering: a review of recent developmentsand applications,”Vacuum., vol. 56, no. 3, pp.159-172, Mar.2000.

J. Musil“Recent advances in magnetron sputtering technology”, “Surface and Coatings Technology,” vol.100 – 101, PP.280-286, Mar 1998.

Matthew J. Goeckner, Johm A. Goree, and Torrence E. Sherdian, Jr., ''Monte Carlo Simulation of Ions in a Magnetron Plasma,”IEEE Trans. Plasma Sci, vol. 19, no. 2, pp. 301-308, Apr. 1991.

T. E. Sherdian and J. Goree, “ Low-frequency turbulent transport in magnetron plasmas”, J. Vac. Sci. Technol. A, vol. 7, no. 3, pp.1014-1018, Oct. 1989.

Wu, S. Z., “Dependence of plasma characteristics on dc magnetron sputter parameters”, Journal of Applied Physics, vol. 98, no.8, p. 083301,Oct 2005.

M. Dimitrova, T. K. Popov, J. Todorovand, and T. G. Naydenova, ''Second derivative Langmuir probe measurements in Faraday dark space in Argon d.c. gas discharge at intermediate pressures,'' J. Phys. Conf. Ser., vol. 44, pp. 169–174, Jul. 2006.

K. Honglertkongsakul, S. Chaiyakun, N. Witit-anun, W. Kongsri, and P. Limsuwan, “Single Langmuir Probe Measurements in an Unbalanced Magnetron Sputtering System,” Procedia Eng., vol. 32, pp. 962–968, Jan. 2012.

S. M. Borah, A. R. Pal, H. Bailung, and J. Chutia, “Effect of E × B electron drift and plasma discharge in dc magnetron sputtering plasma,” Chinese Phys. B, vol. 20, no. 1, p. 014701, Jan. 2011.

B. Crowley, D. Homfray, U. Fantz, D. Boilson, and R. S. Hemsworth'', Electron Energy Distribution Function Measurements by Langmuir Probe in ITER like Negative Ion Sources,” AIP Conf. Proc., vol. 925, no. 1, pp. 193– 207, Sep. 2007.

Kaganovich, A. Smolyakov, Y. Ritsis, E. Ahido, I. J. Michaelides, P. Gornes, F. Taccogna, R. Gueroult, S. Tsikata, A. Bourdon, J.-P. Buff, M. Kedar, A.; T. Boyce, M. Merino, M. Capelli, K. Hara, J. A. Carlson, N. J. Fish, P. Chabert, Schweigert, T. Lafleur, K. Matias, AV. Khrabrov, R.W. Boswell, and A.; Fruchtman, “The physics of E×B discharges related to plasma propulsion and the like Technologies,” Phys. Plasma 27 (12), 120601 (2020).

i. Levchenko, S. Xu, S. Mazouffre, D. Lev, D. Pedrini, D. Goebel, L. Garrigues, F. Taccogna and K. Bazaka, “New Perspectives, Frontiers, and Perspectives for Plasma Space Electric Propulsion,” Phys.Plasma 27(2), 020601 (2020).

kilos. Takahashi, “Radio-frequency thrust-type helicon and magnetic plasmas Plasma nozzles" Rev. Mod. Plasma Phys. 3, 3 (2019).

The Physics and Technology of Ion Sources, edited by I.G. Brown (Wiley, New York, 2004).

J.-P. Boeuf, “Rotating structures in magnetized low-temperature plasmas— Insight from particle simulation, “Front. Plasma Phys. 2, 74 (2014).

J. Y. Kim, K. S. Chung, S. Kim, J. H. Ryu, K.-J. Chung and ES Hwang, Thermodynamics of a magnetically expanding plasma with isothermal behavior Trapped Electrons” New J. Phys. 20, 063033 (2018).

J. Y. Kim, J. Y. Jang, K. S. Chung, K.-J. Chung and YS Hwang, "Timedependent Kinetic analysis of electrons trapped in magnetic expansion Plasma,” Plasma Sources Science. Technol. 28, 07LT01 (2019).

s. Correyero, J. Jarrige, D. Packan, and E. Ahedo, “Plasma beam characterization Along the magnetic nozzle of an ECR motor," Plasma Sources Sci. Technol. 28, `095004 (2019).

k. Takahashi, “Magnetic crater approaching radiofrequency plasma waves Twenty percent thrust efficiency,” Sci. 11, 2768 (2021).

a. Smolyakov, O. Chapurin, W. Frias, O. Koshkarov, E. Rodanov, T.Tang, M. Umansky, Y. Raitses, I. D. Kaganovich, and V. P. Lakhin, "Fluid theory" Simulation of instability, turbulent transport, and coherent structures In partially magnetized plasma for E×B discharges, “Phys. Controlled Plasma Fusion 59, 014041 (2017).

O. Koshkarov, A. Smolyakov, Y. Raitses, and I. Kaganovich, “Self-regulation, Structures, anomalous transport in disordered partially magnetized plasma With intersecting electric and magnetic fields," Phys. Rev. Litt. 122, 18501 (2019).

a. T. Boys, J. A. Carlson, ED Kaganovich, E. Right, and A. Smolyakov, “Scaling the frequency of speech rotation within a Benning dump,” Phys. plasma 25, 072110 (2018).

R. Lucken, A. Tavant, A. Bourdon, M.A. Lieberman, and P. Chabert “Saturation” of magnetic confinement in weakly ionized plasma,” Sci. Technol. 29, 065014 (2020).

J. Y. Kim, J. Y. Jang, J. Choi, J. Wang, W. I. Jeong, M. A. I. Elgarhy,Goo Jo, K.; Chung and YS Hwang, “Magnetic confinement and instability In partially magnetized plasma, "Plasma Sources Sci. Technol. 30, 025011 (2021).

F.W. Sears,'' Electricity and Magnetism'', Addison- Wesley publishing Company ,Inc. , California, 1951.

J. R. Reitz ,F. J. Milford, and R. W. Christy, '' Foundations of Electromagnetic Theory'' , Addison-Wesley publishing Company ,Inc., California, 1979.

[ F.F. Chen and P.C.Jane ,"Lecture Notes on Principle of processing", Plenum Press, (2002(

N. Idris, T.N. Usmawanda, K. Lahna, M. Ramli ,“Temperature estimation using Boltzmann plot method of many calcium emission lines in laser plasma produced on river clamshell sample“, IOP Journal of Physics: Conference Series, 1120, 1, 2018.

N. Ohno, M.A. Razzak , H. Ukai , S. Takamura , Y. Uesugi , “Validity of electron temperature measurement by using boltzmann plot method in radio frequency inductive discharge in the atmospheric pressure range“, Plasma Fusion Res. 1 (2006) 028, 2006.

A.M. El Sherbini, A.A.S. Al Aamer, A.T. Hassan, T.M. El Sherbini, “Measurements of plasma electron temperature utilizing magnesium lines appeared in laser produced aluminum plasma in air“, Optics and Photonics Journal, 2 (2012) 278, 2012.

K.H. Spatschek ,“Introduction to Theoretical Plasma Physics,” lecture series, 2008.

https://www.nist.gov/pml/atomic-spectra-database .

N. Konjevic, A. Lesage, J. Fuhr, and W. Wiese,“Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms“ , J. Phys. Chem. Ref. Data, Vol. 19, No. 6, PP. 1307–1385, 1990.

Downloads

Published

2022-09-04

How to Cite

Alaa.K. Bard, & Qusay. A. Abbas. (2022). INFLUENCE OF EXB DRIFT WAVE INSTABLITY IN HOLLOW MAGNETRON SPUTTERING PARAMETERS. European Scholar Journal, 3(9), 1-11. Retrieved from https://scholarzest.com/index.php/esj/article/view/2637

Issue

Section

Articles