EVOLUTION OF A METHOD FOR CALLUS INDUCTION OF STRAWBERRY (FRAGARIA ANANASSA DUCH)

Authors

  • AHSAN A. KADHIMI Department of Agricultural Biotechnology, College of Biotechnology, University of Al-Qadisiyha, Iraq

Keywords:

Strawberry, Growth Regulators, Callus Induction

Abstract

The aim of this study is to generate callus, while the aim of the experiment is to explore the influence of growth regulators on callus formation in young and mature strawberry leaves (Childers and Rosa Linda). The initiation of Callus from the meristematic cells of both Chandler and 'LiNa' varieties was achieved. Various concentrations of NAA and Kin on Ms media, under dark and light conditions, were used to induction callus. The results showed that the greatest number of callus formation in Chandler and Rosa Linda occurred in the medium of multiple sclerosis that had 2 mg/l NAA with 0.3 mg/l Kin in dark conditions. Additionally, our protocol employs meristems as the source of detection for the induction of callus in both types of meristems. The protocol described in this study can be valuable in creating an in vitro system for strawberries, which holds great potential for genetic transformation and crop improvement.

References

Abbas MS, El-Shabrawi HM, Soliman AS, Selim MA. Optimization of germination, callus induction, and cell suspension culture of African locust beans Parkia biglobosa (Jacq.) Benth. J Genet Eng Biotechnol. 2018 Jun;16(1):191-201. doi: 10.1016/j.jgeb.2017.10.012. Epub 2017 Oct 20. PMID: 30647722; PMCID: PMC6296617.

Adil M, Haider Abbasi B, Ul Haq I. Red light controlled callus morphogenetic patterns and secondary metabolites production in Withania somnifera L. Biotechnol Rep (Amst). 2019 Sep 19;24:e00380. doi: 10.1016/j.btre.2019.e00380. PMID: 31641624; PMCID: PMC6796579.

Cavallaro V, Pellegrino A, Muleo R, Forgione I. Light and Plant Growth Regulators on In Vitro Proliferation. Plants (basel). 2022 Mar 22;11(7):844. doi: 10.3390/plants11070844. PMID: 35406824; PMCID: PMC9002540.

Chokheli VA, Dmitriev PA, Rajput VD, bakulin SD, Azarov AS, Varduni TV, Stepanenko VV, Tarigholizadeh S, Singh RK, Verma KK, Minkina TM. Recent Development in Micropropagation Techniques for Rare Plant Species. Plants (basel). 2020 Dec 8;9(12):1733. doi: 10.3390/plants9121733. PMID: 33302534; PMCID: PMC7764825.

Dar SA, Nawchoo IA, Tyub S, Kamili AN. Effect of plant growth regulators on in vitro induction and maintenance of callus from leaf and root explants of Atropa acuminata Royal ex Lindl. Biotechnol Rep (Amst). 2021 Nov 14;32:e00688. doi: 10.1016/j.btre.2021.e00688. PMID: 34840963; PMCID: PMC8606334.

Emenecker RJ, Strader LC. Auxin-Abscisic Acid Interactions in Plant Growth and Development. Biomolecules. 2020 Feb 12;10(2):281. doi: 10.3390/biom10020281. PMID: 32059519; PMCID: PMC7072425.

Gago J, Martínez-Núñez L, Landín M, Flexas J, Gallego PP. Modeling the effects of light and sucrose on in vitro propagated plants: a multiscale system analysis using artificial intelligence technology. PLoS One. 2014 Jan 20;9(1):e85989. doi: 10.1371/journal.pone.0085989. PMID: 24465829; PMCID: PMC3896442.

Hasnain A, Naqvi SAH, Ayesha SI, Khalid F, Ellahi M, Iqbal S, Hassan MZ, Abbas A, Adamski R, Markowska D, baazeem A, Mustafa G, Moustafa M, Hasan ME, Abdelhamid MMA. Plants in vitro propagation with its applications in food, pharmaceuticals and cosmetic industries; current scenario and future approaches. Front Plant Sci. 2022 Oct 13;13:1009395. doi: 10.3389/fpls.2022.1009395. Erratum in: Front Plant Sci. 2023 Apr 17;14:1197747. PMID: 36311115; PMCID: PMC9606719.

Ji L, Mathioni SM, Johnson S, Tucker D, Bewick AJ, Do Kim K, Daron J, SlotKin RK, Jackson SA, Parrott WA, Meyers BC, Schmitz RJ. Genome-Wide Reinforcement of DNA Methylation Occurs during Somatic Embryogenesis in Soybean. Plant Cell. 2019 Oct;31(10):2315-2331. doi: 10.1105/tpc.19.00255. Epub 2019 Aug 22. PMID: 31439802; PMCID: PMC6790092.

Kulak V, Longboat S, Brunet ND, Shukla M, Saxena P. In Vitro Technology in Plant Conservation: Relevance to Biocultural Diversity. Plants (basel). 2022 Feb 12;11(4):503. doi: 10.3390/plants11040503. PMID: 35214833; PMCID: PMC8876341.

Lassois L, Lepoivre P, Swennen R, van den Houwe I, Panis B. Thermotherapy, chemotherapy, and meristem culture in banana. Methods Mol Biol. 2013;11013:419-33. doi: 10.1007/978-1-62703-074-8_32. PMID: 23179717.

Mahood HE, Sarropoulou V, Tzatzani TT. Effect of explant type (leaf, stem) and 2,4-D concentration on callus induction: influence of elicitor type (biotic, abiotic), elicitor concentration and elicitation time on biomass growth rate and costunolide biosynthesis in gazania (Gazania rigens) cell suspension cultures. Bioresour Bioprocess. 2022 Sep 16;9(1):100. doi: 10.1186/s40643-022-00588-2. PMID: 38647613; PMCID: PMC10991164.

Mannan, M.A., T.C. Sarker, M.T. Akhter, A.H. Kabir and M.F. Alam, 2013. Indirect plant regeneration in aromatic rice (Oryza sativa L.) var. ‘Kalijira’ and ‘Chinigura’. Acta Agr. Slov., 101(2): 231-238.

Mehbub H, Akter A, Akter MA, Mandal MSH, Hoque MA, Tuleja M, Mehraj H. Tissue Culture in Ornamentals: Cultivation Factors, Propagation Techniques, and Its Application. Plants (basel). 2022 Nov 23;11(23):3208. doi: 10.3390/plants11233208. PMID: 36501247; PMCID: PMC9736077.

Murashige T., Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 15 473–497. 10.1111/j.1399-3054.1962.tb08052.x

Pathi KM, Tula S, Huda KM, Srivastava VK, Tuteja N. An efficient and rapid regeneration via multiple shoot induction from mature seed derived embryogenic and organogenic callus of Indian maize (Zea mays L.). Plant Signal Behav. 2013 Oct;8(10):doi: 10.4161/psb.25891. doi: 10.4161/psb.25891. PMID: 23921544; PMCID: PMC4091112.

Pires R, Cardoso H, Ribeiro A, Peixe A, Cordeiro A. Somatic Embryogenesis from Mature Embryos of Olea europaea L. cv. 'Galega Vulgar' and Long-Term Management of Calli Morphogenic Capacity. Plants (basel). 2020 Jun 17;9(6):758. doi: 10.3390/plants9060758. PMID: 32560502; PMCID: PMC7355655.

Roosta HR, Bikdeloo M, Ghorbanpour M. The growth, nutrient uptake and fruit quality in four strawberry cultivars under different Spectra of LED supplemental light. BMC Plant Biol. 2024 Mar 8;24(1):179. doi: 10.1186/s12870-024-04880-5. PMID: 38454341; PMCID: PMC10921718.

Sahida, Y., Tanjina A, B., barna Goswami, M,d. 2022. In vitro Regeneration of Strawberry Plant from Leaf Explants via Callus Induction. Plant Tissue Cult. & Biotech. 32(1): 67-75, 2022 (June)

Villalobos-López MA, Arroyo-Becerra A, Quintero-Jiménez A, Iturriaga G. Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops. Int J Mol Sci. 2022 Oct 10;23(19):12053. doi: 10.3390/ijms231912053. PMID: 36233352; PMCID: PMC9570234.

Wijerathna-Yapa A, Hiti-bandaralage J. Tissue Culture-A Sustainable Approach to Explore Plant Stresses. Life (basel). 2023 Mar 14;13(3):780. doi: 10.3390/life13030780. PMID: 36983935; PMCID: PMC10057563.

Zhao H, Li X, Xiao X, Wang T, Liu L, Li C, Wu H, Shan Z, Wu Q. Evaluating Tartary Buckwheat Genotypes with High Callus Induction Rates and the Transcriptomic Profiling during Callus Formation. Plants (basel). 2023 Oct 24;12(21):3663. doi: 10.3390/plants12213663. PMID: 37960020; PMCID: PMC10647830.

Downloads

Published

2024-05-30

How to Cite

AHSAN A. KADHIMI. (2024). EVOLUTION OF A METHOD FOR CALLUS INDUCTION OF STRAWBERRY (FRAGARIA ANANASSA DUCH). European Journal of Agricultural and Rural Education, 5(5), 31-36. Retrieved from https://scholarzest.com/index.php/ejare/article/view/4585

Issue

Section

Articles