AINTRUSION DETECTION SYSTEM IN SCADA NETWORK USING MACHINE LEARNING

Authors

  • Hadeel Ali Kadhim Department of Electrical and computer enginerning Altinbas University Istanbul, Turkey
  • Abdullahi Abdu Ibrahim Department of Electrical and computer enginerning Altinbas University Istanbul, Turkey

Keywords:

UAV, ML, DL, ANN

Abstract

Machine learning is a branch of artificial intelligence based on the idea that systems can learn to identify patterns and make decisions with a minimum of human intervention. In this study, demonstration learning will be used, using neural networks in a prototype of a drone built to perform trajectories in controlled environments. To accelerate the training convergence process, a new training data selection approach has been introduced, which picks data from the experience pool based on priority instead of randomness. An autonomous maneuver strategy for dual-UAV olive formation air warfare is provided, which makes use of UAV capabilities such as obstacle avoidance, formation, and confrontation to maximize the effectiveness of the attack.

References

P. RADOGLOU-GRAMMATIKIS, P. SARIGIANNIDIS, I. GIANNOULAKIS, E. KAFETZAKIS, E. PANAOUSIS, ATTACKING IEC-60870-5-104 SCADA SYSTEMS, IN: 2019 IEEE WORLD CONGRESS ON SERVICES (SERVICES), 2642-939X, 2019, PP. 41–46, DOI: 10.1109/ SERVICES.2019.0 0 022 .

A. ELGARGOURI, M. ELMUSRATI, ANALYSIS OF CYBER-ATTACKS ON IEC 61850 NETWORKS, IN: 2017 IEEE 11TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT), 2017, PP. 1–4, DOI: 10.1109/ICAICT.2017. 86 86 894 .

RISI, RISI ONLINE INCIDENT DATABASE, 2015, HTTP://WWW.RISIDATA.COM/DATABASE .

R.J. ROBLES , M. KYU CHOI , E. SUK CHO , S. SOO KIM , G.-C. P , S.-S. YEO , VULNERABIL- ITIES IN SCADA AND CRITICAL INFRASTRUCTURE SYSTEMS, INT. J. FUTURE GENER. COM- MUN. NETW. 1 (1) (2008) 99–104 .

M. YAMPOLSKIY, P. HORVATH, X.D. KOUTSOUKOS, Y. XUE, J. SZTIPANOVITS, TAXON- OMY FOR DESCRIPTION OF CROSS-DOMAIN ATTACKS ON CPS, IN: PROCEEDINGS OF THE 2ND ACM INTERNATIONAL CONFERENCE ON HIGH CONFIDENCE NETWORKED SYSTEMS, IN: HICONS ’13, ACM, NEW YORK, NY, USA, 2013, PP. 135–142, DOI: 10.1145/ 2461446.2461465 .

T.M. CHEN, S. ABU-NIMEH, LESSONS FROM STUXNET, COMPUTER 44 (4) (2011) 91– 93, DOI: 10.1109/MC.2011.115 .

R. LANGNER, STUXNET: DISSECTING A CYBERWARFARE WEAPON, IEEE SECUR. PRIVACY 9 (3) (2011) 49–51, DOI: 10.1109/MSP.2011.67 .

R.M. LEE , M.J. ASSANTE , T. CONWAY , GERMAN STEEL MILL CYBER ATTACK, IND. CONTROL SYST. (2014) 1–15 .

S. TRISAL, 3 CYBER ATTACKS THAT ROCKED INDUS- TRIAL CONTROL SYSTEMS, 2017, HTTPS://CYWARE.COM/NEWS/

- CYBER- ATTACKS- THAT- ROCKED- INDUSTRIAL- CONTROL- SYSTEMS- 817FEE48 .

D. BISSON, 3 ICS SECURITY INCIDENTS THAT ROCKED 2016 AND WHAT WE SHOULD LEARN FROM THEM, 2016, HTTPS://WWW.TRIPWIRE.COM/STATE- OF- SECURITY/ ICS- SECURITY/3- ICS- SECURITY- INCIDENTS- ROCKED- 2016- LEARN/ .

I.T. LABORATORY, NATIONAL VULNERABILITY DATABASE, HTTPS://NVD.NIST.GOV/GENERAL .

G. YADAV , K. PAUL , ASSESSMENT OF SCADA SYSTEM VULNERABILITIES, IN: 2019 24TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMA- TION (ETFA), 2019, PP. 1737–1744 .

M. HENRIE, CYBER SECURITY RISK MANAGEMENT IN THE SCADA CRITICAL INFRASTRUC- TURE ENVIRONMENT, ENG. MANAG. J. 25 (2) (2013) 38–45, DOI: 10.1080/10429247. 2013.11431973 .

R.I. OGIE, R. I., CYBER SECURITY INCIDENTS ON CRITICAL INFRASTRUCTURE AND INDUS- TRIAL NETWORKS, IN: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON COM- PUTER AND AUTOMATION ENGINEERING - ICCAE ’17, 2017, PP. 254–258, DOI: 10. 1145/3057039.3057076 .

D. UPADHYAY, S. SAMPALLI, SCADA (SUPERVISORY CONTROL AND DATA ACQUISITION) SYSTEMS: VULNERABILITY ASSESSMENT AND SECURITY RECOMMENDATIONS, COMPUT. SECUR. 89 (2020) 101666, DOI: 10.1016/J.COSE.2019.101666 .

E. LUIIJF, M. ALI, A. ZIELSTRA, ASSESSING AND IMPROVING SCADA SECURITY IN THE DUTCH DRINKING WATER SECTOR, INT. J. CRIT. INFRASTRUCT.PROT. 4 (3) (2011) 124–134, DOI: 10.1016/J.IJCIP.2011.08.002 .

C.-R. CHEN, C.-J. CHANG, C.-H. LEE, A TIME-DRIVEN AND EVENT-DRIVEN APPROACH FOR SUBSTATION FEEDER INCIDENT ANALYSIS, INT. J. ELECTR. POWER ENERGY SYST. 74 (2016) 9–15, DOI: 10.1016/J.IJEPES.2015.07.017 .

H. ALSHAWISH , A. DE MEER , RISK MITIGATION IN ELECTRIC POWER SYSTEMS: WHERE TO START? ENERGY INFORM. 2 (1) (2019) 34 .

G.D. GONZALEZ GRANADILLO , J. GARCIA-ALFARO , E.Y. ALVAREZ LOPEZ , M. EL BARBORI , H. DEBAR , SELECTING OPTIMAL COUNTERMEASURES FOR ATTACKS AGAINST CRITICAL SYS- TEMS USING THE ATTACK VOLUME MODEL AND THE RORI INDEX, COMPUT. ELECTR. ENG. 47 (2015) 13–34 .

G. YADAV, P. K., PATCHRANK: ORDERING UPDATES FOR SCADA SYSTEMS, IN: 2019 24TH IEEE ETFA, 2019, PP. 110–117, DOI: 10.1109/ETFA.2019.8869110 .

G. YADAV, P. GAURAVARAM, A.K. JINDAL, SMARTPATCH: A PATCH PRIORITIZATION FRAME- WORK FOR SCADA CHAIN IN SMART GRID, MOBICOM ’20, ASSOCIATION FOR COMPUTING MACHINERY, NEW YORK, NY, USA, 2020, DOI: 10.1145/3372224.3418162 .

A .A . CÁRDENAS , S. AMIN , S. SASTRY , RESEARCH CHALLENGES FOR THE SECURITY OF CON- TROL SYSTEMS, IN: PROCEEDINGS OF THE 3RD CONFERENCE ON HOT TOPICS IN SECURITY, IN: HOTSEC’08, USENIX ASSOCIATION, BERKELEY, CA, USA, 2008, PP. 6:1–6:6 .

C. NEUMAN , CHALLENGES IN SECURITY FOR CYBER-PHYSICAL SYSTEMS, IN: WORKSHOP ON FUTURE DIRECTIONS IN CYBER-PHYSICAL SYSTEMS SECURITY, 2009, PP. 1–4 .

A.C.F. CHAN, J. ZHOU, ON SMART GRID CYBERSECURITY STANDARDIZATION: ISSUES OF DESIGNING WITH NISTIR 7628, IEEE COMMUN. MAG. 51 (1) (2013) 58–65, DOI: 10. 1109/MCOM.2013.6400439 .

C. SCHUETT, J. BUTTS, S. DUNLAP, AN EVALUATION OF MODIFICATION ATTACKS ON PRO- GRAMMABLE LOGIC CONTROLLERS, INT. J. CRIT. INFRASTRUCT.PROT. 7 (1) (2014) 61–68, DOI: 10.1016/J.IJCIP.2014.01.004 .

Z. BASNIGHT, J. BUTTS, J. LOPEZ, T. DUBE, FIRMWARE MODIFICATION ATTACKS ON PRO- GRAMMABLE LOGIC CONTROLLERS, INT. J. CRIT. INFRASTRUCT.PROT. 6 (2) (2013) 76–84, DOI: 10.1016/J.IJCIP.2013.04.004 .

R. ZHU, B. ZHANG, J. MAO, Q. ZHANG, Y. AN TAN, A METHODOLOGY FOR DETERMINING THE IMAGE BASE OF ARM-BASED INDUSTRIAL CONTROL SYSTEM FIRMWARE, INT. J. CRIT. INFRASTRUCT.PROT. 16 (2017) 26–35, DOI: 10.1016/J.IJCIP.2016.12.002

NIST, NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2017, HTTPS://WWW.NIST. GOV/ .

I. Garitano , R. Uribeetxeberria , U. Zurutuza , A review of SCADA anomaly de- tection systems, in: E. Corchado, V. Snášel, J. Sedano, A.E. Hassanien, J.L. Calvo, D. S´ l e¸ za k (Eds.), Soft Computing Models in Industrial and Environmental Ap- plications, 6th International Conference SOCO 2011, Springer Berlin Heidel- berg, Berlin, Heidelberg, 2011, pp. 357–366 .

Downloads

Published

2022-12-14

How to Cite

Hadeel Ali Kadhim, & Abdullahi Abdu Ibrahim. (2022). AINTRUSION DETECTION SYSTEM IN SCADA NETWORK USING MACHINE LEARNING. European Journal of Research Development and Sustainability, 3(12), 8-17. Retrieved from https://scholarzest.com/index.php/ejrds/article/view/3014

Issue

Section

Articles