GENERATION, CHARACTERIZATION AND DIAGNOSTIC OF ATMOSPHERIC PRESSURE D.C-PLASMA JET
Keywords:
Electron density, electron temperature, optical emission spectroscopy, plasma jetAbstract
Cold atmospheric pressure plasma jets were capable of generating cold plasma plumes that were not confined by electrodes, which make them very enticing for biological, medical and polymer applications. During this work, experimental study of a low frequency, atmospheric plasma-jet discharge in Argon has been presented. The experimental operation of this device was conducted with commercially High D.C. power supply. The discharge process operated by using Argon as input gas with different flow rates. The experimental results showed that the maximum plasma jet length of 3 mm was detected at 14 kV input voltage corresponding to 6 L/min as a Argon flow rate. The effect of distance from nozzle, Argon flow rate and input voltage on the plasma temperature was examined. The gas temperature decreased continuously as the flow rate of nitrogen increasing from 1 L/min to 6 L/min at 14 Kv as a fixed input voltage
References
Tendero, C., Tixier, C., Tristant, P., Desmaison, J. and Leprince, P. (2006) Atmospheric Pressure Plasmas: A Review. Spectrochimica Acta Part B : Atomic Spectroscopy , 61, 2. https://doi.org/10.1016/j.sab.2005.10.003
Tonks, L. (1967) The Birth of Plasma. American Journal of Physics , 35, 857. https://doi.org/10.1119/1.1974266
Fridman, A. and Friedman, G. (2012) Plasma Medicine. John Wiley & Sons, Hoboken.https://doi.org/10.1002/9781118437704
Raizer, Y.P. (1991) Gas Discharge Ephysics. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-642-61247-3
Fridman, A. (2008) Plasmachemistry. Cambridge University Press, Cambridge.
Kolb, J.F., Mohamed, A.-A.H., Price, R.O., Swanson, R.J., Bowman, A., Chiavarini, R.L., Stacey, M. and Schonenbach, K.H. (2008) Cold Atmospheric Pressure Air Plasma Jet for Medical Applications. Applied Physics Letters , 92, 1-3. https://doi.org/10.1063/1.2940325
Lu, X.-P., Jiang, Z.-H., Xiong, Q., Tang, Z.,-Y., Hu, X.-W. and Pan, Y. (2008) An 11 cm Long Atmospheric Pressure Cold Plasma Plume for Applications of Plasma Medicine. Applied Physics Letters , 92, Article ID: 081502. https://doi.org/10.1063/1.2883945
Hong, Y.C. and Uhm, H.S. (2006) Microplasmajetat Atmospheric Pressure. Applied Physics Letters , 89, Article ID: 221504. https://doi.org/10.1063/1.2400078
Zhang, X., Li, M., Zhou, R., Feng, K. and Yang, S. (2008) Ablation of Liver Cancer Cells In Vitro by a Plasma Needle. Applied Physics Letters , 93, Article ID: 021502. https://doi.org/10.1063/1.2959735
Hong, Y.C., Uhm, H.S. and Yi, W.J. (2008) Atmospheric Pressure Nitrogen Plasma Jet: Observation of Striated Multilayer Discharge Patterns. Applied Physics Letters , 93, Article ID: 051504. https://doi.org/10.1063/1.2969287
Nie, Q.-Y., Ren, C.-S., Wang, D.-Z. and Zhang, J.-L. (2008) A Simple Cold Ar Plasma Jet Generated with a Floating Electrode at Atmospheric Pressure. Applied Physics Letters , 93, Article ID: 011503. https://doi.org/10.1063/1.2956411
Deng, X.T., Shi, J.J. and Kong, M.G.J. (2007) Protein Destruction by a Helium Atmospheric Pressure Glow Discharge: Capability and Mechanisms. Applied Physics ,101, Article ID: 074701. https://doi.org/10.1063/1.2717576
Hong, Y.C., Cho, S.C., Kim, J.H. and Uhm, H.S. (2007) A Long Plasma Column in a Flexible Tube at Atmospheric Pressure. Physics of Plasmas , 14, Article ID: 074502. https://doi.org/10.1063/1.2750652
Hong, Y.C., Cho, S.C. and Uhm, H.S. (2007) Twin Injection-Needle Plasmas at Atmospheric Pressure. Applied Physics Letters , 90, Article ID: 141501.https://doi.org/10.1063/1.2718483
Iza, F., Lee, J.K. and Kong, M.G. (2007) Electron Kinetics in Radio-Frequency Atmospheric Pressure Microplasmas. Physical Review Letters , 99, Article ID: 075004. https://doi.org/10.1103/PhysRevLett.99.075004
Iza, F., Kim, G.J., Lee, S.M., Lee, J.K., Walsh, J.L., Zhang, Y.T. and Kong, M.G. (2008) Microplasmas: Sources, Particle Kinetics, and Biomedical Applications. Plasma Processes and Polymers , 5, 322. https://doi.org/10.1002/ppap.200700162
Laroussi, M. (2005) Low Temperature Plasma Based Sterilization: Overview and State of-the-Art. Plasma Processes and Polymers , 2, 391. https://doi.org/10.1002/ppap.200400078
Kalghatgi, S.U., Fridman, G., Cooper, M., Nagaraj, G., Peddinghaus, M., Balasubramanian, M., Vasilets, V.N., Gutsol, A.F., Fridman, A. and Friedman, G. (2007) Mechanism of Blood Coagulation by Nonthermal Atmospheric Pressure Dielectric Barrier Discharge Plasma. IEEE Transactions on Plasma Science , 35, 1559. https://doi.org/10.1109/TPS.2007.905953
Fridman, G., Friedman, G., Gutsol, A., Shekhter, A.B., Vasilets, V.N. and Fridman, A. (2008) Applied Plasma Medicine. Plasma Processes and Polymers , 5, 503. https://doi.org/10.1002/ppap.200700154
Kim, G.C., Kim, G.J., Park, S.R., Jeon, S.M., Seo, H.J., Iza, F. and Lee, J.K. (2009) Air Plasma Coupled with Antibody-Conjugated Nanoparticles: A New Weapon against Cancer. Journal of Physics D : Applied Physics , 42, Article ID: 03200. https://doi.org/10.1088/0022-3727/42/3/032005
Wiesemann, K. (2014) A Short Introduction to Plasma Physics.
Laroussi, M. (2009) Low-Temperature Plasmas for Medicine? IEEE Transactions on Plasma Science , 37, 6. https://doi.org/10.1109/TPS.2009.2017267
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.