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1. INTRODUCTION 
Assume that 𝐺 =  (𝑉, 𝐸) be a simple and undirected graph. The subset 𝐷 of 𝑉 is called  a dominating set of 𝐺 if every 

vertex in set 𝑉 − 𝐷 is adjacent to at least vertex in 𝐷.The domination number 𝛾(𝐺) is the minimum cardinality of  a 

dominating set in 𝐺 [12].The subject of domination in graph theory of the statement appealed to many researchers, 

including them[1-9] by putting some condition on set 𝑉. As well as from research in the study of domination polyno-

mials [10-16], and others (Chromatic Polynomials) [21,22]. In [10] C. Berge is the first introduced the domination 

parameter.  The equality co-neighborhood, inverse equality co-neighborhood, total equality co-neighborhood domina-
tion, fuzzy equality co-neighborhood domination and strong equality co-neighborhood domination are introduced in 
[17,18,19,23]. Let 𝐺𝑛

𝑖  be the family of dominating sets of a graph 𝐺𝑛with cardinality 𝑖 and let 𝑑(𝐺𝑛 , 𝑖) = |𝐺𝑛
𝑖 |. The pol-

ynomial 𝐷(𝐺𝑛 , 𝑥) = ∑ 𝑑(𝐺𝑛 , 𝑖)𝑥𝑖𝑛
𝑖=𝑟(𝐺) , is defined to be the domination polynomial of a graph 𝐺 [12]. In this paper, the 

families of dominating sets of corona graph 𝐺𝑚 = 𝐺𝑛 ⨀ 𝐾1 with cardinality 𝑖.  𝑑(𝐺𝑚, 𝑖)  are constructed. In addition, the 

domination polynomial of 𝐺𝑚  (𝐷(𝐺𝑚 , 𝑥) = ∑ 𝑑(𝐺𝑚 , 𝑖)𝑥𝑖𝑚
𝑖=𝑛 ) is investigated. As usual we use (𝑛

𝑖
) for the combination 

𝑛 𝑡𝑜 𝑖. 
 

Definition 1.1. [24] 
 The corona (𝐺1 ⨀𝐺2) of two graphs 𝐺1 and 𝐺2 is the graph obtained by  taking one copy of 𝐺1 (which has |𝑉 (𝐺1)|) 
copies of 𝐺2, where the 𝑖𝑡ℎ vertex of 𝐺1 is adjacent to every vertex in the 𝑖𝑡ℎ copy of 𝐺2. Let 𝐺1 ≡ 𝐺𝑛   and 𝐺2 ≡ 𝐾1 ,
(𝐺𝑛 ⨀𝐾1).  (see Fig .1) 

 

a       b   

Figure 1:    (a)  𝐾4 ⨀𝐶3        (b)   𝐶6 ⨀𝐾1 

To prove our main results we need the following lemmas: 

Lemma 1.2. [11]. The following properties hold for all graph G.such that  d(Gn, i) = |Gn
i |. 

(i) |Gn
i | = 0   if i >  n     (ii)   |Gn

n| = 1  (iii) |Gn
0| = 1  ∀ n ≥ 0  (iv) |Gn

n−1| = n   

Lemma 1.3. [11]. The following properties hold for all  n ≥ 0.  

(i) (n
i
) = 0   if i >  n     (ii)  (n

n
) = 1    (iii) (n

0
) = 1  ∀ n ≥ 0 
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Theorem 1.4. [11].  Let Sn be star with order n, then 

 𝑑(Sn,𝑖)= (n
i
) − (n−1

i
) ∀ i < n -1, n ≥3  

Theorem 1.5. [11].  Let Sn be star with order n, then 

 𝑑(Sn,𝑖)= (n−1
i−1

) ∀ i < n -1, n ≥3  

2 dominating sets of  corona graphs 
In this section, 𝑑(𝐺𝑚 , 𝑖) of  (𝐺𝑛 ⨀𝐾1), is investigated 

Theorem 2.1. Let 𝐶𝑚 = (𝐺𝑛 ⨀𝐾1)  be corona graph, then  

𝑑(𝐺𝑚, 𝑖)  = ∑  (
𝑛

𝑛 − 𝑘
) (

𝑛 − 𝑘

𝑖 − 𝑛
) 

𝑛

𝑘=0
 ∀ 𝑛 ≥ 1 . 

Proof. 
Let 𝐺𝑚 be corona graph 𝐺𝑚 = 𝐺𝑛 ⨀ 𝐾1 with order  𝑚 = 2𝑛, and let D is dominating set, then we have n of the copies 

of 𝐾1  accordant to Definition 1.1. in this case we have n of the pendant vertices therefore must be every vertex in 𝐺𝑛 

or the pendant vertex to which it is adjacent must be belong to D, then |𝐷| = 𝑖 ≥ 𝑛. Now if we take n-k of the vertices 

from the first graph 𝐺𝑛 , in this case we must reserve k vertices from the pendant vertices, so we have n-k from the 

lone vertices, so the probabilities of the first graph  ( 𝑛
𝑛−𝑘

) and the probabilities of the pendant vertices are (𝑛−𝑘
𝑖−𝑛

), and 

as a result, the number of dominating set for each k are ( 𝑛
𝑛−𝑘

)(𝑛−𝑘
𝑖−𝑛

), and since  k = 0,1,...n, then the total number of 

each dominating sets is ∑  ( 𝑛
𝑛−𝑘

)(𝑛−𝑘
𝑖−𝑛

) 𝑛
𝑘=0   for all cardinality 𝑖 ≥ 𝑛  

 

Theorem 2.2. Let 𝐶𝑚 = (𝐺𝑛 ⨀𝐾1)  be corona graph, then  
𝑑(𝐺𝑚, 𝑖) = 2𝑛   ∀ 𝑖 = 𝑛 . 

 

 

Proof.    

Let 𝐺𝑚  be corona graph 𝐺𝑚 = 𝐺𝑛 ⨀ 𝐾1  with order  𝑚 = 2𝑛 , then 𝑑(𝐺𝑚 , 𝑖) = ∑  ( 𝑛
𝑛−𝑘

)(𝑛−𝑘
𝑖−𝑛

) 𝑛
𝑘=0   ∀ 𝑛 ≥ 1 according to 

Theorem 2.1. If 𝑛 = 𝑖, then  𝑑(𝐺𝑚, 𝑖) = ∑  ( 𝑛
𝑛−𝑘

)(𝑛−𝑘
0

) 𝑛
𝑘=0 = ∑  ( 𝑛

𝑛−𝑘
) 𝑛

𝑘=0 , because  (𝑛−𝑘
0

) = 1 according to Lemma 1.3. 

Now to prove ∑  ( 𝑛
𝑛−𝑘

) 𝑛
𝑘=0 = 2𝑛  by using  mathematical induction. 

1. Let 𝑛 = 1 to prove  ∑  ( 1
1−𝑘

) 1
𝑘=0 = 21 , we have ∑  ( 1

1−𝑘
) 1

𝑘=0 = ( 1
1−0

) + ( 1
1−1

) = 1 + 1 = 2, then  the relationship is 

true when 𝑛 = 1. 

2. Suppose that  the relationship is true when 𝑛 = 𝑟, then ∑  ( 𝑟
𝑟−𝑘

) 𝑟
𝑘=0 = 2𝑟 

3. To prove that the relationship is true when 𝑛 = 𝑟 + 1. We have ∑  ( 𝑛
𝑛−𝑘

) 𝑛
𝑘=0 = ∑  ( 𝑟+1

𝑟+1−𝑘
) 𝑟+1

𝑘=0 =  ∑  ( 𝑟
𝑟+1−𝑘

) 𝑟+1
𝑘=0 +

( 𝑟
𝑟−𝑘

) = ∑  ( 𝑟
𝑟+1−𝑘

) 𝑟+1
𝑘=0 + ∑  ( 𝑟

𝑟−𝑘
) = 𝑟+1

𝑘=0 ∑  ( 𝑟
𝑟+1−𝑘

) 𝑟+1
𝑘=1 + ∑  ( 𝑟

𝑟−𝑘
) = 𝑟

𝑘=0 ∑  ( 𝑟
𝑟−𝑘

) 𝑟
𝑘=0 + ∑  ( 𝑟

𝑟−𝑘
) = 𝑟

𝑘=0 2𝑟 + 2𝑟 = 2(2𝑟)  

=2𝑟+1          according to Theorem 1.4 and Theorem 1.5 and Lemma 1.3. therefore the relationship is true when 

𝑛 = 𝑟 + 1.  Thus the proof is done.  

Let 𝐺𝑚 = (𝐺𝑛 ⨀𝐾1) be a corona graph with order 2n. Using Theorem 2.1. and Theorem 2.2.  obtain the coeffi-

cients of 𝐷(𝐺𝑚 , 𝑥) for 1≤ n ≤ 10 in Table 1. Let 𝑑(𝐺𝑚 , 𝑖)  = |𝐺𝑚
𝑖 |.  There are interesting relationships between the 

numbers 𝑑(𝐺𝑚, 𝑖) (1≤ i≤ 2n) in the table. 

 
Table 1. 𝑑(𝐺𝑚, 𝑖)The number of dominating set of corona graph 𝐶𝑚 = (𝐺𝑛 ⨀𝐾1)   with cardinality 𝑖 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

n                     

1 2 1                   

2 0 4 4 1                 

3 0 0 8 12 6 1               

4 0 0 0 16 32 24 8 1             

5 0 0 0 0 32 80 80 40 10 1           

6 0 0 0 0 0 64 19 240 160 60 12 1         
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2 

7 0 0 0 0 0 0 12

8 

440 672 560 280 84 14 1       

8 0 0 0 0 0 0 0 256 1024 1792 1792 1120 532 112 16 1     

9 0 0 0 0 0 0 0 0 512 2304 4626 5376 4032 2016 672 144 18 1   

10 0 0 0 0 0 0 0 0 0 1024 5120 11520 15360 13440 4032 3360 960 180 20 1 

 
In the following theorem, we obtain some properties of 𝑑(𝐺𝑚 , 𝑖) of 𝐶𝑚 = (𝐺𝑛 ⨀𝐾1) 

Proposition 2.3. Let 𝐶𝑚 = (𝐺𝑛 ⨀𝐾1)  be corona graph, then  

(i) 𝑑(𝐺𝑚, 𝑖) = 0   ∀ 𝑖 < 𝑛  

(ii) 𝑑(𝐺𝑚, 𝑖) = 2𝑛   if  𝑖 = 2𝑛 − 1 

(iii) 𝑑(𝐺𝑚, 𝑖)  = 1     if  𝑖 = 2𝑛. 

(iv) 𝛾(𝐺𝑚) = 𝑛 

Proof. 
(i) It is verified through the proof of the Theorem 2.1. 
(ii)  Since 𝑚 = 2𝑛, then it is verified according to Lemma1.2.  

(iii) Since 𝑚 = 2𝑛, then it is verified according to Lemma 1.3. 

(iv) Since  𝑑(𝐺𝑚, 𝑖) = 0   ∀ 𝑖 < 𝑛  and  𝑑(𝐺𝑚 , 𝑖)  = 2𝑛   ∀ 𝑖 = 𝑛 according to (i) and Theorem 2.2, then 𝛾(𝐺𝑚) = 𝑛.   

 

3   domination polynomial of 𝑮𝒏of graphs 

In this section, we introduce and investigate the new parameter domination polynomial of 𝐺𝑚. 

Definition 3.1.[11]  Let 𝐺𝑚
𝑖  be the family of dominating set of corona graph  𝐶𝑚 = (𝐺𝑛 ⨀𝐾1) with cardinality i, and 

let 𝑑(𝐺𝑚 , 𝑖) = |𝐺𝑚
𝑖 |. Then the domination polynomial 𝐷(𝐺𝑚, 𝑥) of  𝐶𝑚 = (𝐺𝑛 ⨀𝐾1)  is defined as 

𝐷(𝐺𝑚, 𝑥) = ∑ 𝑑(𝐺𝑚 , 𝑖)𝑥𝑖𝑚
𝑖=1 = ∑ 𝑑(𝐺𝑚 , 𝑖)𝑥𝑖𝑚

𝑖=𝑟(𝐺) . 

In the following corollary, we obtain some properties of 𝐷(𝐺𝑚 , 𝑥) of  𝐺𝑚. 

Corollary 3.2. 
The following properties of 𝐷(𝐺𝑚 , 𝑥) are hold ∀m ≥2 

1. 𝐷(𝐺𝑚 , 𝑥) = 𝐷(𝐺2𝑛, 𝑥) = ∑ 𝑑(𝐺2𝑛, 𝑖)𝑥𝑖2𝑛
𝑖=𝑛  

2. 𝐷(𝐺𝑚 , 𝑥) = ∑ (∑  ( 𝑛
𝑛−𝑘

)(𝑛−𝑘
𝑖−𝑛

) 𝑛
𝑘=0 )𝑥𝑖2𝑛

𝑖=𝑛  

3. 𝐷(𝐺𝑚 , 𝑥) = (2𝑥)𝑛 + ∑ (∑  ( 𝑛
𝑛−𝑘

)(𝑛−𝑘
𝑖−𝑛

) 𝑛
𝑘=0 )𝑥𝑖2𝑛−2

𝑖=𝑛+1 + 2𝑛𝑥2𝑛−1 + 𝑥2𝑛 

Proof. 
From definition of the domination polynomial  𝐷(𝐺𝑚 , 𝑥) = ∑ 𝑑(𝐺𝑚 , 𝑖)𝑥𝑖𝑚

𝑖=1 = ∑ 𝑑(𝐺𝑚, 𝑖)𝑥𝑖𝑚
𝑖=𝑟(𝐺) ,  we get : 

1. Since 𝑚 = 2𝑛 and 𝛾(𝐺𝑚) = 𝑛, then  𝐷(𝐺𝑚, 𝑥) = 𝐷(𝐺2𝑛, 𝑥) = ∑ 𝑑(𝐺2𝑛, 𝑖)𝑥𝑖2𝑛
𝑖=𝑛  according to Definition 1.1. and Propo-

sition 2.3. 

2. 𝐷(𝐺𝑚 , 𝑥) = ∑ 𝑑(𝐺𝑚, 𝑖)𝑥𝑖𝑚
𝑖=𝑟(𝐺) = ∑ (∑  ( 𝑛

𝑛−𝑘
)(𝑛−𝑘

𝑖−𝑛
) 𝑛

𝑘=0 )𝑥𝑖2𝑛
𝑖=𝑛 , according to Theorem 2.1. and Definition 3.1. 

3. Since 𝑑(𝐺𝑚 , 𝑖) = 2𝑛   ∀ 𝑖 = 𝑛. according to Theorem 2.2 and since 𝑑(𝐺𝑚 , 𝑖) = 2𝑛 if  𝑖 = 2𝑛 − 1  and  𝑑(𝐺𝑚, 𝑖)  = 1     
if  𝑖 = 2𝑛  according to Proposition 2.3.  then 𝐷(𝐺𝑚 , 𝑥) = ∑ 𝑑(𝐺2𝑛, 𝑖)𝑥𝑖2𝑛

𝑖=𝑛 = (2𝑥)𝑛 + ∑ (𝑑(𝐺2𝑛, 𝑖))𝑥𝑖2𝑛−2
𝑖=𝑛+1 + 2𝑛𝑥2𝑛−1 +

𝑥2𝑛 = (2𝑥)𝑛 + ∑ (∑  ( 𝑛
𝑛−𝑘

)(𝑛−𝑘
𝑖−𝑛

) 𝑛
𝑘=0 )𝑥𝑖2𝑛−2

𝑖=𝑛+1 + 2𝑛𝑥2𝑛−1 + 𝑥2𝑛 according to Definition 3.1.  

Example 3.3. 

 Let 𝐺8 = (𝐾4 ⨀𝐾1)  be corona graph, we can get on 𝐷(𝐺8, 𝑥) from the table 1. We have 𝐷(𝐺8, 𝑥) = ∑ 𝑑(𝐺8, 𝑖)𝑥𝑖8
𝑖=4 =

16𝑥4 + 32𝑥5 + 24𝑥6 + 8𝑥7 + 𝑥8 (by Corollary 1). (see Fig .2(a))  

Example 3.4.  

Let 𝐺18 = (𝐶9 ⨀𝐾1)  be corona graph, we can get on 𝐷(𝐺18, 𝑥) from the table 1. We have 𝐷(𝐺18, 𝑥) = ∑ 𝑑(𝐺18, 𝑖)𝑥𝑖18
𝑖=9 =

512𝑥9 + 2304𝑥10 + 4626𝑥11 + 5376𝑥12 + 4032𝑥13 + 2016𝑥14 + 672𝑥15 + 144𝑥16 + 18𝑥17 + 𝑥18  (by Corollary 1). (see 
Fig .2(b))  
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a         b  

Figure 2:   (a)  𝐾4 ⨀𝐾1  (b)  𝐶9 ⨀𝐾1 
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