

European Scholar Journal (ESJ) Available Online at: https://www.scholarzest.com Vol. 3 No.4, April 2022 ISSN: 2660-5562

DOMINATING SETS AND DOMINATION POLYNOMIAL OF CORONA OF GRAPHS

Sahib Shayyal Kahat*

Department of Professional Supervision, the General Director of Education Al-Najaf Al-Ashraf, Najaf, IRAQ.

Artic	le history:	Abstract:										
Received:	26 th January 2022	Let $G = (V, E)$ be a simple and undirected grap. A subset D of V is called										
Accepted:	26 th February 2022	dominating set of G, if $\forall v \in V$ either v in D or is adjacent to at least one										
Published:	13 th April 2022	vertex in D. Let G_m be corona graph $G_m = G_n \odot K_1$ with order $m = 2n$. In this										
		paper, the G_m^i , is constructed and the recursive formula for $d(G_m, i)$ is obtained.										
		The polynomial $D(G_m, x) = \sum_{i=1}^m d(G_m, i)x^i$, (domination polynomial) for corona										
		graph with some properties of this polynomial is determined										
Keywords: Dominating set Family of dominating sets, Domination Polynomial, Corona of Granh												

Dominating set, raming of dominating sets, Domination Polynomial, Corona of Grapi

1. INTRODUCTION

Assume that G = (V, E) be a simple and undirected graph. The subset D of V is called a dominating set of G if every vertex in set V - D is adjacent to at least vertex in D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set in G [12]. The subject of domination in graph theory of the statement appealed to many researchers, including them[1-9] by putting some condition on set V. As well as from research in the study of domination polynomials [10-16], and others (Chromatic Polynomials) [21,22]. In [10] C. Berge is the first introduced the domination parameter. The equality co-neighborhood, inverse equality co-neighborhood, total equality co-neighborhood domination, fuzzy equality co-neighborhood domination and strong equality co-neighborhood domination are introduced in [17,18,19,23]. Let G_n^i be the family of dominating sets of a graph G_n with cardinality *i* and let $d(G_n, i) = |G_n^i|$. The polynomial $D(G_n, x) = \sum_{i=r(G)}^n d(G_n, i) x^i$, is defined to be the domination polynomial of a graph *G* [12]. In this paper, the families of dominating sets of corona graph $G_m = G_n \odot K_1$ with cardinality *i*. $d(G_m, i)$ are constructed. In addition, the domination polynomial of G_m $(D(G_m, x) = \sum_{i=n}^m d(G_m, i)x^i)$ is investigated. As usual we use $\binom{n}{i}$ for the combination n to i.

Definition 1.1. [24]

The corona $(G_1 \odot G_2)$ of two graphs G_1 and G_2 is the graph obtained by taking one copy of G_1 (which has $|V(G_1)|$) copies of G_2 , where the i^{th} vertex of G_1 is adjacent to every vertex in the i^{th} copy of G_2 . Let $G_1 \equiv G_n$ and $G_2 \equiv K_1$, $(G_n \odot K_1)$. (see Fig.1)

Figure 1: (a) $K_4 \odot C_3$ (b) $C_6 \odot K_1$ To prove our main results we need the following lemmas:

Lemma 1.2. [11]. The following properties hold for all graph G.such that $d(G_n, i) = |G_n^i|.$ $|G_n^i| = 0$ if i > n (ii) $|G_n^n| = 1$ (iii) $|G_n^0| = 1 \forall n \ge 0$ (iv) $|G_n^{n-1}| = n$ (i)

Lemma 1.3. [11]. The following properties hold for all $n \ge 0$. $\binom{n}{i} = 0$ if i > n (ii) $\binom{n}{n} = 1$ (iii) $\binom{n}{0} = 1 \quad \forall n \ge 0$

Theorem 1.4. [11]. Let S_n be star with order n, then

 $d(S_n,i) = \binom{n}{i} - \binom{n-1}{i} \forall i < n-1, n \ge 3$

Theorem 1.5. [11]. Let S_n be star with order n, then

 $d(S_n,i) = \binom{n-1}{i-1} \forall i < n-1, n \ge 3$

2 dominating sets of corona graphs

In this section, $d(G_m, i)$ of $(G_n \odot K_1)$, is investigated

Theorem 2.1. Let $C_m = (G_n \odot K_1)$ be corona graph, then

$$d(G_m, i) = \sum_{k=0}^n \binom{n}{n-k} \binom{n-k}{i-n} \quad \forall n \ge 1.$$

Proof.

Let G_m be corona graph $G_m = G_n \odot K_1$ with order m = 2n, and let D is dominating set, then we have n of the copies of K_1 accordant to Definition 1.1. in this case we have n of the pendant vertices therefore must be every vertex in G_n or the pendant vertex to which it is adjacent must be belong to D, then $|D| = i \ge n$. Now if we take n-k of the vertices from the first graph G_n , in this case we must reserve k vertices from the pendant vertices, so we have n-k from the lone vertices, so the probabilities of the first graph $\binom{n}{n-k}$ and the probabilities of the pendant vertices are $\binom{n-k}{i-n}$, and as a result, the number of dominating set for each k are $\binom{n}{n-k}\binom{n-k}{i-n}$, and since k = 0, 1, ..., n, then the total number of each dominating sets is $\sum_{k=0}^{n} \binom{n}{n-k}\binom{n-k}{i-n}$ for all cardinality $i \ge n$

Theorem 2.2. Let $C_m = (G_n \odot K_1)$ be corona graph, then $d(G_m, i) = 2^n \quad \forall i = n$.

Proof.

Let G_m be corona graph $G_m = G_n \odot K_1$ with order m = 2n, then $d(G_m, i) = \sum_{k=0}^n {\binom{n}{n-k}} {\binom{n-k}{i-n}} \quad \forall n \ge 1$ according to Theorem 2.1. If n = i, then $d(G_m, i) = \sum_{k=0}^n {\binom{n}{n-k}} {\binom{n-k}{0}} = \sum_{k=0}^n {\binom{n}{n-k}}$, because $\binom{n-k}{0} = 1$ according to Lemma 1.3. Now to prove $\sum_{k=0}^n {\binom{n}{n-k}} = 2^n$ by using mathematical induction.

- 1. Let n = 1 to prove $\sum_{k=0}^{1} {1 \choose 1-k} = 2^1$, we have $\sum_{k=0}^{1} {1 \choose 1-k} = {1 \choose 1-0} + {1 \choose 1-1} = 1 + 1 = 2$, then the relationship is true when n = 1.
- 2. Suppose that the relationship is true when n = r, then $\sum_{k=0}^{r} {r \choose r-k} = 2^{r}$
- 3. To prove that the relationship is true when n = r + 1. We have $\sum_{k=0}^{n} \binom{n}{n-k} = \sum_{k=0}^{r+1} \binom{r+1}{r+1-k} = \sum_{k=0}^{r+1} \binom{r}{r+1-k} + \binom{r}{r-k} = \sum_{k=0}^{r+1} \binom{r}{r-k} = \sum_{k=0}^{r+1} \binom{r}{r-k} = \sum_{k=0}^{r} \binom{r}{r-k} = \sum_{k=0}^{r} \binom{r}{r-k} + \sum_{k=0}^{r} \binom{r}{r-k} = 2^r + 2^r = 2(2^r) = 2^{r+1}$ according to Theorem 1.4 and Theorem 1.5 and Lemma 1.3. therefore the relationship is true when

n = r + 1. Thus the proof is done.

Let $G_m = (G_n \odot K_1)$ be a corona graph with order 2*n*. Using Theorem 2.1. and Theorem 2.2. obtain the coefficients of $D(G_m, x)$ for $1 \le n \le 10$ in Table 1. Let $d(G_m, i) = |G_m^i|$. There are interesting relationships between the numbers $d(G_m, i)$ ($1 \le i \le 2n$) in the table.

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
n																				
1	2	1																		
2	0	4	4	1																
3	0	0	8	12	6	1														
4	0	0	0	16	32	24	8	1												
5	0	0	0	0	32	80	80	40	10	1										
6	0	0	0	0	0	64	19	240	160	60	12	1								

Table 1. $d(G_m, i)$ The number of dominating set of *corona graph* $C_m = (G_n \odot K_1)$ with cardinality *i*

							2													
7	0	0	0	0	0	0	12	440	672	560	280	84	14	1						
							8													
8	0	0	0	0	0	0	0	256	1024	1792	1792	1120	532	112	16	1				
9	0	0	0	0	0	0	0	0	512	2304	4626	5376	4032	2016	672	144	18	1		
10	0	0	0	0	0	0	0	0	0	1024	5120	11520	15360	13440	4032	3360	960	180	20	1

In the following theorem, we obtain some properties of $d(G_m, i)$ of $C_m = (G_n \odot K_1)$

Proposition 2.3. Let $C_m = (G_n \odot K_1)$ be corona graph, then

(i)
$$d(G_m, i) = 0 \quad \forall i < n$$

(ii)
$$d(G_m, i) = 2n$$
 if $i = 2n - 1$

- (iii) $d(G_m, i) = 1$ if i = 2n.
- (iv) $\gamma(G_m) = n$

Proof.

- It is verified through the proof of the Theorem 2.1. (i)
- (ii) Since m = 2n, then it is verified according to Lemma 1.2.
- (iii) Since m = 2n, then it is verified according to Lemma 1.3.
- Since $d(G_m, i) = 0$ $\forall i < n$ and $d(G_m, i) = 2^n$ $\forall i = n$ according to (i) and Theorem 2.2, then $\gamma(G_m) = n$. (iv)

3 domination polynomial of *G_n* of graphs

In this section, we introduce and investigate the new parameter domination polynomial of G_m .

Definition 3.1.[11] Let G_m^i be the family of dominating set of corona graph $C_m = (G_n \odot K_1)$ with cardinality *i*, and let $d(G_m, i) = |G_m^i|$. Then the domination polynomial $D(G_m, x)$ of $C_m = (G_n \odot K_1)$ is defined as $D(G_m, x) = \sum_{i=1}^m d(G_m, i) x^i = \sum_{i=r(G)}^m d(G_m, i) x^i.$

In the following corollary, we obtain some properties of $D(G_m, x)$ of G_m .

Corollary 3.2.

The following properties of $D(G_m, x)$ are hold $\forall m \ge 2$

- 1. $D(G_m, x) = D(G_{2n}, x) = \sum_{i=n}^{2n} d(G_{2n}, i) x^i$ 2. $D(G_m, x) = \sum_{i=n}^{2n} (\sum_{k=0}^n {n \choose n-k} (x^i) x^i)$
- 3. $D(G_m, x) = (2x)^n + \sum_{i=n+1}^{2n-2} (\sum_{k=0}^n {n \choose n-k} {n-k \choose i-n}) x^i + 2nx^{2n-1} + x^{2n-1}$

Proof.

From definition of the domination polynomial $D(G_m, x) = \sum_{i=1}^m d(G_m, i) x^i = \sum_{i=r(G)}^m d(G_m, i) x^i$, we get :

- 1. Since m = 2n and $\gamma(G_m) = n$, then $D(G_m, x) = D(G_{2n}, x) = \sum_{i=n}^{2n} d(G_{2n}, i) x^i$ according to Definition 1.1. and Proposition 2.3.
- 2. $D(G_m, x) = \sum_{i=r(G)}^m d(G_m, i) x^i = \sum_{i=n}^{2n} (\sum_{k=0}^n {n \choose n-k} (x^{-k}) (x^{-k}) (x^{-k}) x^i$, according to Theorem 2.1. and Definition 3.1.
- 3. Since $d(G_m, i) = 2^n$ $\forall i = n$. according to Theorem 2.2 and since $d(G_m, i) = 2n$ if i = 2n 1 and $d(G_m, i) = 1$ *if* i = 2n according to Proposition 2.3. *then* $D(G_m, x) = \sum_{i=n}^{2n} d(G_{2n}, i) x^i = (2x)^n + \sum_{i=n+1}^{2n-2} (d(G_{2n}, i)) x^i + 2nx^{2n-1} + 2nx^{2n-1}$ $x^{2n} = (2x)^n + \sum_{i=n+1}^{2n-2} (\sum_{k=0}^n {n \choose n-k} (x^{n-k}) (x^{i} + 2nx^{2n-1} + x^{2n})$ according to Definition 3.1.

Example 3.3.

Let $G_8 = (K_4 \odot K_1)$ be corona graph, we can get on $D(G_8, x)$ from the table 1. We have $D(G_8, x) = \sum_{i=4}^8 d(G_8, i)x^i =$ $16x^4 + 32x^5 + 24x^6 + 8x^7 + x^8$ (by Corollary 1). (see Fig. 2(a))

Example 3.4.

Let $G_{18} = (C_9 \odot K_1)$ be corona graph, we can get on $D(G_{18}, x)$ from the table 1. We have $D(G_{18}, x) = \sum_{i=9}^{18} d(G_{18}, i)x^i =$ $512x^9 + 2304x^{10} + 4626x^{11} + 5376x^{12} + 4032x^{13} + 2016x^{14} + 672x^{15} + 144x^{16} + 18x^{17} + x^{18}$ (by Corollary 1). (see *Fig .*2(b))

European Scholar Journal (ESJ)

Available Online at: https://www.scholarzest.com Vol. 3 No.4, April 2022 ISSN: 2660-5562

Figure 2: (a) $K_4 \odot K_1$ (b) $C_9 \odot K_1$

REFERENCES

- 1. M. N. Al-Harere and M. A. Abdlhusein, Pitchfork domination in graphs, Discrete Mathemics, Algorthem and Applications, 12 (2) (2020) 2050025.
- 2. M.N. Al-Harere, A. A. Omran, and A. T. Breesam, Captive domination in graphs, Discrete Mathematics, Algorithms and Applications, 12 (6) (2020) 2050076.
- 3. M. N. Al-Harere and P. A. KhudaBakhash, Tadpole domination in graphs, Baghdad Sci. J. 15 (2018) 466–471.
- 4. M. N. Al-harere, P. A. Khuda ,Tadpole Domination in duplicated graphs,Discrete Mathematics, Algorithms and Applications, 13(2)(2021) 2150003.
- 5. M. N. Al-Harere, A. A. Omran, On binary operation graphs, Bol. Soc. Paranaense Mat. 38(7) (2020), 59-67
- 6. M. A. Abdlhusein and M. N. Al-Harere, Total pitchfork domination and its inverse in graphs, Discrete Mathematics, Algorthem and Applications, (2021)2150038.
- 7. M. A. Abdlhusein and M. N. Al-Harere, New parameter of inverse domination in graphs, Indian Journal of Pure and Applied Mathematicse, (accepted to appear)(2021).
- 8. M. A. Abdlhusein and M. N. Al-Harere, Doubly connected pitchfork domination and its inverse in graphs, TWMS J. App. Eng. Math., (accepted to appear) (2021).
- 9. M. A. Abdlhusein, Doubly connected bi-domination in graphs, Discrete Mathematics, Algorthem and Applications, 13(2(2021)) 2150009.
- 10. C. Berge, The theory of graphs and its applications, Methuen and Co, London, 1962.
- 11. S. Sh. Kahat, A. M. Khalaf, R. Hasni, Dominating Sets and Domination Polynomials of Stars, Australian Journal of Basic and Applied Sciences, 8(6) June 2014, Pages: 383-386.
- 12. S. Sh. Kahat, A. M. Khalaf, Dominating Sets and Domination polynomial of Complete Graphs with Missing Edges, Journal of Kufa for Mathematics and Computer Vol.2, No.1, may 2014, 64-68.
- 13. S. Sh. Kahat, A. M. Khalaf, R. Hasni, Dominating Sets and Domination Polynomial of Wheels, Asian Journal of Applied Sciences, Volume 02 Issue 03, June (2014), 287-290.
- 14. S. Sh. Kahat, A. M. Khalaf, Dominating Sets and Domination polynomial of *k*-gluing of Graphs, to appear in Journal of *DIRASAT TARBAWIYA*.
- 15. S. Sh. Kahat, A. M. Khalaf, Dominating Sets and Domination polynomial of *k*-gluing of Graphs II, *DIRASAT TARBAWIYA, Volume 12, Issue 48 supplement, 2019, Pages 358-367.*
- 16. S. Sh. Kahat, M. N. Al-Harere, Dominating sets and polynomial of equality co-neighborhood domination of graphs, accepted for publication in 1st International Conference on Advanced Research in Pure and Applied Science, by AIP Conference Proceedings (ISSN: 0094-243X).ICARPAS-2021.
- 17. S. Sh. Kahat, M. N. Al-Harere, Inverse Equality Co-Neighborhood Domination in Graphs, reprint..
- S. Sh. Kahat, M. N. Al-Harere, Total Equality Co-Neighborhood Domination in Graphs, accepted for publication in Sixth National Scientific/ Third International Conference, published by AIP Conference Proceedings (ISSN: 0094-243X). ICCEPS-2021.
- 19. S. Sh. Kahat, Strong Equality Co-Neighborhood Domination in Graphs, Eurasian Journal of Physics, Chemistry and Mathematics 4, 39-45
- S. Sh. Kahat, A. A. Omran, M. N. Al-Harere, Fuzzy equality co-neighborhood domination of graphs, International Journal of Nonlinear Analysis and Applications, 2021, 12(2), pp. 537–545
- 21. S. Sh. Kahat, A. M. Khalaf, Chromatic Polynomials and Chromaticity of Zero-Divisor Graphs, (ICAMES'2013) April 29-30, (2013) Singapore 350-352.

- 22. S. Sh. Kahat, A. M. Khalaf, Chromatic Polynomials and Chromaticity of Zero-Divisor Graphs II, to appear, IC-MA-2013 Chair Committees, (2013).
- 23. A. A. Omran, M. N. Al-Harere, and Sahib Sh. Kahat, Equality co-neighborhood domination in graphs, Discrete Mathematics, Algorithms and Applications this link is disabled, 2022, 14(1), 2150098
- 24. J. A. Gallian, A Dynamic Survey of Graph Labeling, the Electronic j. of combinatorics, (2016).