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1. INTRODUCTION

The generalized inverse generalized Weibull distribution has been proposed by Jain et al. [1]. They studied the
mathematical properties of this distribution.. The probability density function of generalized inverse generalized
Weibull distribution is given by

-1
f(x;0)= ayalox exp(—y(%) }{1— exp(—y(%) H ;x> 0. (1)

The joint density function or likelihood function of (1) is given by

f(x0)=(ara*0) [l_l[(x e i) jexp {(9 —1)?09 [1—e_y(f‘)a }] . @

The log likelihood function is given by

AV AV
n -y — n -y =
log f (g;e)znlog(ayzae)ﬂog H(xi‘(‘”l))e [Xij +(60-1)> log| 1-e [Xi] . (3)
i=1 i=1
Differentiating (3) with respect to 6 and equating to zero, we get the maximum likelihood estimator of 8 which is

given as
1\1
A n /’L a
@=n| > log|1-exp —y(—j : (4)
X

i=1 i

2. BAYESIAN METHOD OF ESTIMATION
The Bayesian inference procedures have been developed generally under squared error loss function

2
L(@,H):(H— 6’) . (5) The Bayes
estimator under the above loss function, say, &s is the posterior mean, i.e,
0s =E(0). (6)

Zellner [2], Basu and Ebrahimi [3] have recognized that the inappropriateness of using symmetric loss function.
Norstrom [4] introduced precautionary loss function is given as
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N 2

A (e_ej

L(@,Hj:f. (7) The Bayes
0

A A }/
estimator under this loss function is denoted by @r and is obtained as Op = [E(@z )} :
(8)

Calabria and Pulcini [5] points out that a useful asymmetric loss function is the entropy loss
L(5)o[8° = p log, (5)-1]

9 A
where o =g,and whose minimum occurs at & = 6. Also, the loss function L(é‘) has been used in Dey et al. [6]
and Dey and Liu [7], in the original form having p =1. Thus L (&) can written be as
L(5)=b[&-log, (5)—1]; b>0. 9)
The Bayes estimator under entropy loss function is denoted by @& and is obtained by solving the following equation

et

Wasan [8] proposed the K-loss function which is given as

N 2

) (e_ej

L(@,HJ=A—. (11) Under K-
00

loss function the Bayes estimator of 6 is denoted by @« and is obtained as

O {EE(SZ))T' (12)

Al-Bayyati [9] introduced a new loss function which is given as

2
L(0,0j=9° (0—0] : (13) Under Al-
Bayyati’s loss function the Bayes estimator of 6 is denoted by a1 and is obtained as
R E (HCJrl)
On = —r - (14)
E(¢)

Let us consider two prior distributions of 8 to obtain the Bayes estimators.
(i) Quasi-prior: For the situation where we have no prior information about the parameter 8, we may use the quasi
density as given by

gl(é’):eid ;60>0,d >0, (15) where d =

0 leads to a diffuse prior and ¢ = 1, a non-informative prior.
(ii) Gamma prior: Generally, the gamma density is used as prior distribution of the parameter 6 given by

9,(0) = s 0“ e ; 6>0. (16)

I'(a)

3. Posterior Density under §, (0)

The posterior density of 6 under gl(ﬁ) , on using (2), is given by
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(aa0) [ﬁ(xi—w) )e7(i;)a ]exp {( o 1)2": log (1_ o T ﬂ g

i=1

(aﬂae)n[ﬁ(w)e y(wajexp[ i.OQL (:rﬂgdd@

i=1
pe ]
_ jore eaglog{lex”[y(fﬁ]aﬂlde
0

(]

— 69n—d
r(n—d+1) °

Theorem 1. On using (17), we have

f(6/x)=

O 3

n—-d+1
-1

Eametl

(17)

—C

]

Proof. By definition,

E(6°)=[6°f (6/x)do

- I'(n—d+1)

0
_a\n-d+1

EEAWN] e
el
st sl (2]

From equation (18), for ¢ =1, we have

n—-d+c+1

-1

E(0)=(n—d +1)[an:log llexp[;/[%jaﬂ J _ (19)

From equation (18), for ¢ =2, we have

E(6?)=[(n-d +2)(n~d +1)][g|og {pr{y[fjﬂly (20)

From equation (18), for ¢ =—-1, we have
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E[%j: (nid)ZIOQ llexp(;/(%fﬂl. (21)

From equation (18), for c=Cc+1, we have

1 —(c+1)

E(90+l) _ Fgﬂn(;(i:j—i—;_;) ilog llexp {y(%]aﬂ . (22)

i=1 i

4. Bayes Estimators under J, (6’)
From equation (6), on using (19), the Bayes estimator of 8 under squared error loss function is given by

0s =(n—d +1) iZ:“Iog [1eXp[y(%ja]]l 1_ (23)

From equation (8), on using (20), the Bayes estimator of 6 under precautionary loss function is obtained as

05 :[(n—d +2)(n—-d +1)]% an“log {1exp(;/[%jaﬂ : (24)

From equation (10), on using (21), the Bayes estimator of 8 under entropy loss function is given by

Oe =(n—d) glog llexpiy[%fﬂl 1- (25)

From equation (12), on using (19) and (21), the Bayes estimator of 8 under K-loss function is given by
A 1 n l a N N
Ox =[(n—d+1)(n—d)]*| > log 1—exp[—;{—} J : (26)
i-1 X;

From equation (14), on using (18) and (22), the Bayes estimator of 6 under Al-Bayyati’s loss function comes out to be

On =(n—d+c+1) i}log{lexp{y(%)aﬂl . (27)

5. Posterior Density under g, ()

Under 0, (6’) , the posterior density of 6, using equation (2), is obtained as

(aﬂag)n(ﬁ(xi(M)e—y(:;)a]exp{(g_l)g,og [l_e—y(z)aﬂ rf;) g

i=1

I(Wa@)n [H(X (a+l))e_7(:;)a ]E‘Xp {(6’ -1) Zl: log {1— 7l HF[ZQ) 0" "do

f(6/x)=

i=1

il
oo T

Tema—l e[

0

dé
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| gl 4] )
v ool ]
o ) R A

I'(n+a)

0n+a—l e [

(28)

Theorem 2. On using (28), we have
—C

E(@C)%[ﬂ+glog ll—exp[—y[%]aﬂ ] . (29)

Proof. By definition,
E(0°)=[6°f (6/x)do

i il I

I'(n+a)

[mglog llexp[7 (jj]” fnrare)
" T
ezl ]

From equation (29), for ¢ =1, we have

E(@)(n+a)[ﬂ+ilog [1exp[7,[%fﬂ J _ (30)

From equation (29), for ¢ =2, we have

E(HZ) - [(n+a+l)(n+a)][,8+iznl"log llexp(y[xifﬂ ] : (31)

From equation (29), for ¢ =—1, we have

O e il

From equation (29), for c =Cc+1, we have

do

nN+a+cC
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4 —(c+1)

I(n+a+c+1) n 2)
| 1- —y| — . 33
F(nra) ﬂ+§09 exp 7&} (33)

E(6°)=

6. Bayes Estimators under J, (9)

From equation (6), on using (30), the Bayes estimator of 8 under squared error loss function is given by
-1 -

a
A n ﬂ/
Os =(n+a)| B+ log|1—exp —y(—j : (34)
i=1 Xi
From equation (8), on using (31), the Bayes estimator of 6 under precautionary loss function is obtained as
A 1 n ﬂ, é ol
Op =[(n+oz+1)(n+oz)]E ﬂ+2|og 1-exp —y(—j . (35)
= X;
From equation (10), on using (32), the Bayes estimator of 8 under entropy loss function is given by
A n /’L a )
O =(n+a+1)| B+ log|1-exp —y[—] : (36)
i-1 X
From equation (12), on using (30) and (32), the Bayes estimator of 8 under K-loss function is given by
A 1 n /’L a al
Ox =[(n+a)(n+a-1)]"| B+ log|1-exp —7/[—] . (37)
i=1 X
From equation (14), on using (29) and (33), the Bayes estimator of 8 under Al-Bayyati’s loss function comes out to be
A n /1 a al
On =(n+a+c)| B+ log|1-exp —y(—J : (38)
i=1 X
CONCLUSION

In this paper, we have obtained a number of estimators of parameter of generalized inverse generalized Weibull
distribution. In equation (4) we have obtained the maximum likelihood estimator of the parameter. In equation (23),
(24), (25), (26) and (27) we have obtained the Bayes estimators under different loss functions using quasi prior. In
equation (34), (35), (36), (37) and (38) we have obtained the Bayes estimators under different loss functions using
gamma prior. In the above equation, it is clear that the Bayes estimators depend upon the parameters of the prior
distribution. We therefore recommend that the estimator’s choice lies according to the value of the prior distribution
which in turn depends on the situation at hand.
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