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INTRODUCTION 
In solving many water management problems, computer simulations (systems of mathematical models) of 

complex hydrogeological objects (forecasting the regime of groundwater in irrigated fields, determining the optimal 
structure and regime of collector networks, etc.) play an important role. The solution to such problems can be obtained 

on the basis of a joint consideration of river and soil currents and their interactions. Ground and surface waters are 

components of the runoff system in the river catchment, where practically all the main processes of the hydrological 
cycle are present for predicting the water regime of soils and grounds on a regional scale. 

If the flow rate in rivers is large compared to the inflow (or outflow from the river) from groundwater, then there 
is no need for simultaneous modeling of surface and groundwater, and the dynamics of each system can be investigated 

separately. In this case, it is advisable to construct not one, but two systems of equations (the first for the dynamics of 

river flows and the second for the dynamics of soil flows). 
 

MATERIALS AND METHODS 
In this regard, it is possible to separately solve problems for the river network, and use the calculation results 

when solving the problem of planned filtration, or vice versa. 
These questions are devoted to works [1-4], where mathematical models and algorithms are presented, in which 

the methods of finite differences and finite elements are mainly used. However, it should be noted that when solving 

hydrogeological problems, due to the need for a large amount of computer time, they still have a limited scope. 
Therefore, it is desirable to develop simplified models that would allow the study of hydrogeological objects with an 

accuracy sufficient for practical purposes. 
The main hypothesis for constructing a simplified model is that the processes occurring in the soils of irrigated 

agriculture are considered as periodic functions of time. This hypothesis is related to the fact that the regime of 

groundwater in irrigated fields is mainly determined by the regime of irrigation and leaching, which are repeated 
periodically [6]. In this case, solutions to systems of equations describing processes in soil and soils (planned filtration 

processes) can be sought in the form of a Fourier series. 
Mathematical setting. To describe the processes of planned filtration, the Boussinesq equations are used [1-3]: 
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in a free-flowing horizon. The uniqueness of the solution (1) of the equation is determined by the presence of 

boundary and initial conditions in the form 

1(1 ) ( , , ), 0
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H T x y t t t
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  
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+ − =  
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                                 (2) 

0 ( , )H H x y= при    t=0.                                    (3) 

where t - is time (day); ,x y - coordinates in the horizontal plane (m); ( , , )H x y t - elevation of the groundwater 

surface (m); ( , , )х у t - coefficient of fluid loss; ( , , )х у t -feeding function; фk - filtration coefficient, (m/day); 

( , )a x y - elevation of the earth's surface, (m); b( , )x y  - elevation of the bottom of the aquifer, (m). Here is  a 

coefficient taking the value 0 or 1; ( , , )х у t -assigned functions. 

The most commonly used hydrodynamic model of water movement in river channels and flow control systems 
are the Saint-Venant equations [5]: 
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Where n  is the roughness coefficient given by  

1 1 1(1 ) ( )h Q t + − =  , 2 2(1 ) ( )h Q t + − =    (6) 

0 ( ), ( ), 0, 0h h s Q Q s t s l= = =        (7) 

In the case of branching into several channels, the left boundary condition is calculated from the system of 
equations (4) and (5), and the conjugation conditions; 

1 1 2 3( , ) ( , ) ( , ) ......Q l t Q O t Q O t= + +     (8) 

1 1 2 3( , ) ( , ) ( , ) ......h l t h O t h O t= = =     (9) 

where iQ  is the consumption of the i -th channel; ih  - the depth of the flow of the i -th channel; il -is the length of 

the channel under consideration. With concentrated lateral outflow (pumping stations)  

2 1 1( , ) ( , ) ( )бокQ O t Q l t Q t= −         (10) 

2 1 1( , ) ( , )h O t h l t=          (11) 

Here t  is the time, (sec), s  is the distance along the channel, (m); ( , )h s t  - flow depth, (m); ( )bi s - the slope 

of the channel bottom; Q( , )s t - flow rate through   of the cross section, (m3/sec.); B  - channel width, (m); g

=9,8 m/s2; 1( , )d s t  - distributed lateral inflow and evaporation, (m2/sec.), with the help of which water exchange 

between streams and groundwater is expressed; 

5 3

2 3

1
( )pk z

n




= flow modulus determined by Manning's empirical 

formula; where n  is the roughness coefficient, given; R -hydraulic radius, (m); 1 2, 1  =  or 0;  - known functions. 

Main part 

The influence of groundwater on the channel flow is carried out through the 1d  term, which depends on its bed, 

determined by the lithological structure of the under-channel sediments and the clogging of the channel, as well as on 

the flow rate and speed of water movement in the river, etc. In the presence of a hydraulic connection between the 

channel current and the movement of water in the saturated zone in the G  region with the Г boundary along the 

рГ  tree graph, which is an image of the river network in the ,x y  plane, the 1( , )d s t  value was calculated as follows. 
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where H  is the elevation of the groundwater surface relative to the comparison plane (m), ( )p s  is the 

parameter of the relationship of the channel flow with groundwater, characterizing: the heterogeneity of the lithological 
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composition and the colmatation of the channel. In those places where the groundwater level lies below the bottom of 

the bH Z  river, the connection between the runoffs and the groundwater will be carried out in only one direction. 

In these sections of the рГ  boundary, the discharge 1d  will flow from the river into the groundwater, depending on 

the depth and width of the river, the coefficient of vertical filtration and the thickness of the clogging layer [3]. 
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Here kph  is the critical depth, below the filtration from the river stops (m); kh  - the thickness of the clogging layer 

(m); bK  - vertical filtration coefficient (m / day) 

To find a solution to problem (1) - (11), it is necessary that the functions 

1 2 0 0( ), ( ), h ( ), ( ), ( ), ( , )t t s Q s I s w s h   at max( ) 10 , 0 , 0ss e h h t t       were specified, where 

max ( )h s is a given function that exceeds any values for each s  from the interval under consideration. 

Method for the numerical solution of equations. When combining solutions to the problems of planned 
filtration and flow through the irrigation network, it is necessary to take into account that the characteristic times of the 

processes during filtration are significantly longer than when water moves in the irrigation system. 

1. To apply the finite-difference method in solving Saint-Venant equations (4), (5), the nonlinear term Q Q  is 

expanded by the Taylor formula in the vicinity of node 
1

2
i j+  of the computational grid. Then, approximating the 

derivatives in equations (4) and (5) using implicit difference schemes, we obtain the following grid systems of equations. 
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The system of equations (4), (5), together with conditions (6) - (11), make it possible to determine the distribution of 

water depths and flow rate ,Q h on layer 1j + over time. The sweep method is used to solve this system. 

2. First method. To solve the equations of planned filtration, the method of alternating directions (or fractional 

steps) is used, in which, at the first half step along the t  axis, an approximation of the derivatives is taken, but by an 

implicit scheme along the x  axis and according to an explicit scheme along the y  axis. In the second half step, the 

opposite is true. In each ijw  cell on the constructed grid, the planned filtration equations (1) are written in finite-

difference form: 
1
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Similarly expressed
l

hy ijL H . 

The sweep method was used to solve the grid equations. 

3. Second method. When solving equation (1), we replace the partial derivatives with respect to spatial variables 

by finite-difference analogs. As a result, we obtain a system of ordinary differential equations: 
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where h  is the step along the x  and y  axes. 

Since the hypothesis of periodicity is accepted for the investigated object, we will seek the solution of these 

equations in the form of a Fourier series, limiting ourselves only to the k  terms (naturally, the k  should not be large, 

but such that the leading terms are taken into account). 
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where 
)(kA , )(kC  are the complex amplitudes of the k  -th harmonic; Tg

Tg
,

2
 = -period of the simulated process, 

t -time. 

Substituting expressions (15) and (16) into (14), we obtain 
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Since equation (17) is complex, it can be represented in the form of two real systems of algebraic equations. The 

complex amplitudes 
)(k

ijA and 
)(k

ijС can be represented as:  
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Substituting (18) into (17), equating the real and imaginary parts, we obtain a system of algebraic equations. The 

resulting system of algebraic equations is easily solved by the method of successive approximations. 
When implementing the solution algorithm, the simulated filtration area is divided into subdomains so that the 

information about the two subdomains is simultaneously placed entirely in the RAM together with the information 

contained in the control program (see Picture 1), where KB is the number of subdomains in the simulated filtration 

area. In this case, the main idea is that the solution process is performed continuously for all subdomains, that is, during 
the solution, the value of the function at the boundary of each subdomain is not fixed in advance. 

 
It can be noted that in the decision process for each subdomain, the modeled area, the calculation is 

interconnected with each other. In this case, we have two following advantages. First, when going from one area to 

another, there is no need to set boundary conditions; secondly, if the solution in each subdomain of the modeled area 
is made dependently, then when two adjacent subdomains are joined, there will be no accumulation of errors. 

4. Results of calculations. To implement this work, a program has been drawn up. A part of the irrigated areas of 
the right bank of the lower reaches of the Amu Darya was taken as an example. When calculating, the modeled object 

is divided into three sections. The calculation was carried out during the growing season with a duration of 90 days. 

1 2 3 КВ-1 … КВ 

Picture 1 
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Picture 2. Map of groundwater hydroisogypsum 

(0th day of the process). 

 

Picture 3. Groundwater hydroisogypsum 

map (30th day of the process). 

 
The following initial data were taken: the coefficient of fluid loss  -was taken to be constant throughout the 

entire region and equal to 0.1; 365=qT  period of the day; the time step for the river flow problem is 3 hours; the step 

in x  and y  is 2 km. 

To assess the possibility of using the developed algorithm and practical goals, the calculation results were 
compared with field observations, with the calculation according to the program, where the harmonic balance method 

and the alternating direction method are used to solve the planned filtration problem (with the same initial and boundary 
conditions). 

The results are shown in pictures 2 - 5, which shows changes in groundwater isolines at the beginning of the 

growing season ( 0=t ) and at the end of the growing season 90=t  
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Picture 4. Groundwater hydroisogypsum map 
(60th day of the process). 

 

Picture 5. Groundwater hydroisogypsum map 
(90th day of the process). 

 

 
The results show that at the end of the growing season along the canals, there is a decrease in the level of 

groundwater due to their diversion through irrigation networks. 
Groundwater level from the surface of the earth 

Table 1. 
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23 1,65 1,86 1,13 1,98 2,02 1,91 2,29 2,19 1,91 

25 2,10 2,24 1,97 2,06 2,23 1,91 1,96 1,50 1,93 

30 1,59 1,75 2,09 1,66 1,71 1,91 1,72 1,42 1,90 

38 1,24 1,71 1,79 1,58 1,6 1,78 1,88 1,69 1,78 

66 1,38 1,58 1,69 1,66 1,57 1,64 1,87 1,58 1,86 

69 1,46 1,76 1,48 1,87 1,88 1,6 2,16 1,45 1,63 

26 0,97 1,18 1,51 1,11 1,2 1,46 1,44 1,22 1,35 

44 2,40 2,44 1,19 3,21 2,49 1,69 3,31 2,52 1,44 

81 0,96 1,28 1,69 1,31 1,37 1,56 1,62 1,46 1,47 

40 1,69 1,61 1,43 2,03 1,69 1,44 2,27 1,79 1,33 

 
In the node where well 44 is located (see Table 1), the deviation is greater than in other nodes, both when 

calculating according to the proposed algorithm, and also by the finite difference method. This happened due to the 
inaccuracy of the initial information about the object, since linear interpolation was used for unknown parameters. When 

calculated by the harmonic balance method and the finite difference method, the deviations do not exceed 0.03 + 0.35 

m. The results obtained differ from field observations of the groundwater regime by no more than 0.07 + 0.59 m. The 
harmonic balance method for solving the problem of planned filtering is more economical in terms of the cost of 



European Scholar Journal (ESJ) 
__________________________________________________________________________ 

65|P a g e  

computer time and memory. Thus, it was found that when determining the hydrogeological parameters on irrigated 

fields, the harmonic balance method can be used. 
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