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 In this article, we will study the problem arising in the study of the processes of diffusion or filtration of a 

liquid (gas) in multilayer layers, taking into account convective transfer [1,2,3]. 

 
In the case of a 3-layer reservoir, the problem is formulated as follows: 

Define in  

   TtxDиTtzxD  0,100,10,10 1  

 Correspondingly, continuous functions 1( , ), ( , , )u x t u x z t , 2 ( , , )u x z t  satisfying the system of equations: 
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Here  

2( , , ), ( , , , ), ( ), ( , ), ( ), ( ), ( ), ( , ), ( , ), ( , ), ( ), ( ), ( 1,2), ( , )i i i i i kF x t u F x z t u x x z K x m x K x A x t A z t B x t A x a t k R t s   12( )a t   

given functions, and 

0( ), ( ) 0, ( , ) 0, ( , ) 0, ( ) 0, (0) 0, ( ) ( )i i i i i iK x m x A x t A A z t A A x K K z и m z       - positive for 0z  . 

We will assume that the solutions themselves and all known functions in the equations are smooth 
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The peculiarity of these problems is that the desired function enters the equations of the problem in such a way that 
each of the equations has a "Main" unknown function, while the rest are either not contained or are represented by 

their own boundary conditions. 

Introducing division , 0,1;j
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task for j  everyone (3) (4)- linearly relative { ( ), ( , )}j iju x u x z  and has the only solution[1,2,3]. Introducing the 

norm 
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By induction 
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1 2,c c   some constants depend on input functions. 

Functions , ( , )
ijj t j t iju x t u      satisfy the system of equations of type a (3), (4). 

For solutions  ( ) ,
j ijx u x t   by induction we uniformly estimate 
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In the future, through kM  we will denote constants depending on the input data of the problems. Let us establish 

the uniform boundedness of the families of quantities. 
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From the established estimates, we have 
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following cases:  

Case 1. Limit 
0

lim ( )
z

z


 finite. Then the right-hand side of (6) is bounded by a constant that does not depend 

on the partitioning method. In the limit 0   linear interpolations ( , ) ( , , )iu x t u u x z t 
 accordingly in 1D and D

 

coinciding with ( , ) ( , , )iu x j u u x z j   at t j  and linearly depending on t inside the layers ( 1)j t j     give 

a solution ( , ) ( , , ), 1,2iu x t u u x z t i   in area 1D u D  respectively 

  Case 2. If  l i m ( )i
z

t
    

is infinite or does not exist, then we cannot use estimate (6) to prove the 

equicontinuity of families. However, using the boundary conditions at z=0, one can be convinced of the equicontinuity 
of the families in this case as well. 

Note 1 
For the numerical solution, a modified version of the differential sweep is used [2] and is implemented by the Maple 

software system 

Note 2 

The approximate solution constructed by the method of lines converges to the exact one with the speed ( )  ,    

time step 
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