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1. To the triangle internal and external drawn circles centers between the distance to find
Optional to the triangle internal and external drawn circles centers between the distance to find formula : - optional to
the triangle internal drawn circle radius r to , external drawn circle radius and to R equal to if to the triangle internal

and external drawn circles centers between distance to d = v R? — 2R7(1) . equal to [1]

Proof :
A A

P

1- picture.
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2- picture.

G

It is known to the triangle internal drawn circle center his bisectors intersection at the point will be From angle A
dropped bisector and to the triangle external drawn turn around intersection Let G be the point . Then " Three _

horned about the spear to the lemma according to |BG| = |GO| = |GC|equaIities will be appropriate. [2]

Proof ( " three horned spear lemma about "); from (Fig. 2) . it seems that < BAG =< BKG = B, , and
E GBC = < GCBit follows that Now |BO| we will make an incision

O point internal drawn turn around center that it was

for < ABO =< CB0O = a. As a result
<GB0 =< GOB = g + tand

< GBC = < GCB = B. From the latest results

while |BG| = |GO| = |GC lequality is appropriate a

o
will be Proof finished _ £\ B ‘
3- picture.
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. T . BG|
Now ADO and KBG similar triangles for Twe find the sine of the angle by SINT = 120l (2) sint = ?(3)
circular intersecting vatars property according to |AU| . |UG| = |M G| - |OL|reasonabIe, from this we arrive at

the following equality
|A0| - |BG| = (R —d) - (R + d)(4). From (2) and (3) . |A0| - |BG| = 2Rr(5).

(4) and (5) . while to (R—d)-(R+d)=2Rr®6) . have we will be From (6) . dIf we find
d = v R? + 2R1(1) expression harvest will be It has been proven . A

2. Solving problems for sample
Issue 1.

A, B, C of the triangle sides suitable respectively 4,5,6 ha equal to if to him internal and external drawn circles
centers between find the distance . B

2slaBc) ,  lasllBcl-lacl
plasc)’ 4-s(ABC)

Solution: " =

P(ABC) = (|AB| + |BC| + |AC))

Of the triangle sides through

To him internal and external drawn

Circles radii find _

(1)- formula let 's put A

_ 2-5(aBc) V7

" plaBc) 2

_ lasl-lscl-lacl

i
4-5({4AEBC) VT

@) -2() (- m

picture 4.
Issue 2.

A circle ABCD is a rectangle internal drawn _ to the triangle ABC internal drawn from the center O to point B of the
circle has been the distance is 4 ha equal to of BO continuation of the triangle ABC external drawn circle with at point

D intersected into BD = 9 and << DBC = 30%s equal to, find the distance between the centers of the circles
inscribed inside and outside ABC. [4]
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Solution :

To the triangle external drawn turn around

From the center triangle ADE passing through
Let 's do it (Fig. 5). It is known that OFB triangle
the triangle DAE similar _

OFB and DAE are triangles for

of sin30 value we count .

] roo. laD|
sin30° = —sin30° = —
loB| 2R

|OB| = 4and |0D| = 5since

. r . L
sin30° = —<=sin30%°=-
loB| 4

= r=2

sin300 = 42!
2R

5

R

= sin30° = = R =05,

D 5- picture.

Now |@I| = vV R% — 2Rrwe find the distance using the formula .| OT |
|0I| =452 —-2.5-2=4/5.
Answer |G’f| = \,E [ |

3. To The Triangle External And External Internal Drawn Circles Centers Between The Distance To Find

Now above sides BA and BC of the triangle continue we will deliver . As a result, to the sides internal , to the basis
while external circle drawing possible and such circle to triangle external internal drawn it is called a circle .

* Optional to the triangle external and external internal drawn circles radii suitable respectively r and to R equal to let

it be, then to the triangle external and external internal drawn circles centers between distance d = V12 + 2Ry
through the formula is considered

4|Page



European Journal of Research Development and Sustainability (EJRDS)

5 MN
Proof : A R )‘é

B r

\ |
A C

D K
L
R
O

6- picture.

It is known that OLB and DAN triangles similar _ This triangles for sin ,Bwe calculate .
; R . labl
EMp =——7). 5N = ——8).
B |GB|(7) B 2r )

(7) and (8) . equal to |AD | - |OB| = 2Rrwe form (9).
OB and OM cutters for |OD |- |OB| = |0OK| - |OM|(10). equality appropriate .

" Three horned spear from the lemma about" the |AD| = |Df| = |DC| = |DG|equaIity holds. (10) of the
following in appearance our writing can. [8]

|OD|-|0OB| = |0K|- (|OK| + 2r)a1). |AD|- |OB| = |0D|- |OB| = 2Rr12).
(11) and (12) . |OD|-|0OB| = |0K|- (|OK| + 2r)
2Rr = |0K| - (|OK| + 27)

(I0KD*+ (|OK|)-2r=2Rr < (|OK|)=+r*+2Rr—r.

The distance between the centers of the circles inscribed outside and inside the triangle |Of | = |OK | + Tis equal
to. It |OI| = v/7r? + 2R follows from this.
A . It has been proven

4. Matters solve for sample _
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Issue 1.

The radius is 2 ha equal to which is T -centered circumcircle of triangle ABC internal drawn is , the triangle from the
end B dropped bisector circle at point D cut passes . BD 's to CD during equal to has been point I in the distance

received is , from point I to AC the most short the distance is 3 ha equal to if , ”T| find the distance.

solve : |:|

the condition of the matter according to (Fig. 7) appropriate .

B

As follows to make done we will increase .
sides AB and BC continue which makes

If the center is I and radius to IE equal to
It was external internal circle drawing can _
(Fig. 8).

From us to the triangle radius 2 ha equal to has been
to has been

External internal drawn circles centers betweent
The distance to find was asked was _
known to the triangle external and

external internal drawn circles
centers between |IT |distance

IIT| = Vr® + 2Rr formula

Through is determined .

SO:T=2,R=3.

Answer :|IT| =22 +2-2-3=4.

8- picture.

Issue 2.

The radius is 12 ha equal to which is I -centered BP and BQ attempts to circle conducted . Third don't try and BP and
BQ _ suitable at points M and N respectively cut passes . Harvest to the MBN form external drawn centered at O turn

around radius 6 ha equal to if ”O|ﬁnd the distance.
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Solution : i

As a result , I is centered circle to the triangle MBN external
Internal drawn circle will be

From us was asked ”U|and the distance is MBN

To the triangle external and external internal drawn

Circles centers between the distance gives _
10| = V72 T 2rR \
Thatis :|[I0| = V62 +2-6-12 = 6+/5

Answer : | 10| = 6+/5. -

9-picture

5. Independent solve for issues .
1
1.M, N, P sides MN and NP of the triangle suitable by 10.15, << DB Crespectively T — arccos (;) to equal to
[ a
if to him internal and external drawn circles centers between find the distance . ( Answer : 10 ||? ).
N

2 . The circle KLMN is a rectangle internal drawn _ KLM to the triangle internal drawn from the center O of the circle
to the point L has been the distance is 6 ha equal to of LO continuation of the triangle KLM external drawn circle with

at point N intersected into LN = 15 and < NLM = 30%s equal to, is internal to KLM and external drawn circles
centers between find the distance . ( Answer : 3&'@).

3 . A circle ABCD is a rectangle internal drawn _ Triangle ABC has center O radius 3 ha equal to has been circle
internal drawn from point O to point B has been the distance is 6 ha equal to of BO continuation of the triangle ABC
external drawn circle with at point D intersected if BD = 14 to ABC internal and external drawn circles centers
between find the distance . ( answer : 4).

4. The radius is 6 ha equal to which is T -centered circle FBN triangle internal drawn is , the triangle from the end B
dropped bisector circle at point D cut passes . BD 's to ND during equal to has been point I in the distance received
from point I to FN the most short the distance is 9 ha equal to if , [IT'| find the distance. ( Answer : 12) . [5]

5. The radius is 20 ha equal to is centered at P attempts BF and BE to circle conducted . Third don't try and BF and
BE _ suitable at points K and T respectively cut passes . Harvest to the KBT form external drawn centered at O turn
around radius 5 ha equal to if ”U| find the distance . ( Answer : 15) .

6. Sides are 4,6 and 6 equal to has been from the point B of the triangle dropped bisector to him external drawn
circle at point D cut passes . BD 's to CD during equal to point I in the distance received and I to AC _ the most short

17

distance is equal to the Ecircle inscribed outside the triangle from the center to point I has been find the distance .
J

( Answer : 3) .
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