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identification. . It is receiving more and more attention and is frequently used 
in civil applications like access control and financial security. One of the critical 

elements in image processing applications that refer to human traits for user 
verification is the fingerprint. In real terms, wrinkles will split ridgelines and 

create a string of false minutiae, fatally destroying the structure and texture 
of a fingerprint. Wrinkles will thereby decrease the accuracy of the fingerprint 

identification algorithm, especially in the leading technique based on minutiae-

matching. In this article, we investigate two elements of the treatment of 
wrinkles and ridge reconstruction using fingerprint photos. To start, we 

calculate the distance between pseudo minutiae pairing. Then, we reconstruct 
ridges based on midpoint criteria of a line segment with endpoints. The 

outcomes are presented in the paper. 
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INTRODUCTION 

As the significance of automatic person identification applications increases, fingerprint-based identification is getting 
much attention. The fingerprint is the most trustworthy proof for labeling among the biometric data that is now available, 

including the face, speech, iris, and gesture. Feature extraction, data collecting, and matching are the three main stages 
of a general fingerprint recognition system [1]. Due to their resistance to various sources of fingerprint degeneration, 

the end and bifurcation of ridges serve as the fingerprint's primary representation for the stage of fingerprint matching. 

For instance, minutiae are the foundation upon which the ANSI-NIST standard fingerprint description is created [2]. 
Miniature detection and matching heavily depend on ridge orientation estimation and image segmentation, even though 

ridge orientation is invariably used for checking, describing, and sensing minutiae. Accurate image segmentation helps 
avoid detecting artificial minutiae in low-quality image areas [2, 3]. 

Minuet-primary extraction removes little details from a fingerprint following preprocessing techniques like binarization, 

enhancement, thinning, etc. The matching phase, as the name suggests, involves comparing two fingerprints to 
ascertain if they are from the same finger or not. Accurate minutiae extraction with more tiny omissions or erroneous 

extractions is significant for performance improvement for a minutiae-based recognition system. 
Numerous strategies, including the gradient scheme, Slit, projection-based techniques, the Gray-level 

consistency/variance technique, and calculations in the frequency region, have recently been used to estimate the 
orientation field (OF) of fingerprint patterns [4, 5]. Because of its superior performance and resolution compared to 

other methods, gradient squared averaging is typically used to determine the orientation field of a picture block [6–9]. 

The estimation of an orientation map (OM) may not be accurate because gradient extraction is susceptible to noise and 
flaws [10]. In contrast, an orientation smoothing stage can solve this issue and improve the ridge structure 

representation for fingerprint classification. Numerous strategies, including the gradient scheme, Slit, projection-based 
techniques, the Gray-level consistency/variance technique, and calculations in the frequency region, have recently been 

used to estimate the orientation field (OF) of fingerprint patterns [4, 5]. Because of its superior performance and 

resolution compared to other methods, gradient squared averaging is typically used to determine the orientation field 
of a picture block [6–9]. The estimation of an orientation map (OM) may not be accurate because gradient extraction 

is susceptible to noise and flaws [10]. In contrast, an orientation smoothing stage can solve this issue and improve the 
ridge structure representation for fingerprint classification. The quality of fingerprint images hardly influences the 

accuracy of the recognition algorithm. Some poor fingerprint images will lead to extracting minutiae mistakenly and 
error matching. One of the unfortunate images is occupied by creases distinguished by collinear terminations on ridges 
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[4]. Fortunately, it can repair creases. Jian et al. [3] and Zhou J et al. [10, 11] indicate that wrinkles often appear in 

fingerprint recognition for older adults. However, influenced by the precision of the sensor, the skin dryness, wounds, 
dirt, oil stain, etc., the captured fingerprint images are quickly clouded by creases, even if Youngers assesses them. 

Case detection and repair are required to improve recognition accuracy while processing some poor-quality fingerprint 
images. The wrinkles will split up the normal ridgelines, producing several pseudo minutiae in these areas. Because of 

this, we propose an approach to detect wrinkles based on the Minutia Density (MD) distribution. First, calculate the 

distance between pseudo minutiae pairing. Second, we reconstruct ridges based on midpoint criteria of a line segment 
with endpoints. The results show an apparent increase in recognition accuracy after crease repair. 

The rest of the document is organized as follows: Section 2 describes the fingerprint recognition algorithm. A brief 
description of the linked works is provided in Section 3. which proposes an algorithm for ridge reconstruction and crease 

detection based on the methodology in Section 4. The findings and recommendations are presented in Sections 5 and 

6, respectively. 
 

RELATED WORK 
Fingerprints are the appearances or imprints left by a person's fingers on a surface. They are used to identify people 

based on the distinctive whorls and ridges on their fingertips. The challenging field of fingerprint crease detection has 
attracted very few researchers. Finding creases is quite difficult due to the roughness of fingerprints. It is challenging 

to distinguish the wrinkles from other features on the fingerprint due to their crowded background. It can be difficult 

to identify the crease(s) in a fingerprint because valleys and wrinkles frequently resemble one another. Fingerprint 
valleys are hollow channels that lie in between ridges. The creases are also known to cut across the ridges and valleys 

at an angle that is typically wide enough to distinguish them from the valleys. Visual observations suggest that most 
wrinkles are at an angle of more than 20 degrees to the ridge and valley structure. Therefore, designing a crease 

detection algorithm requires many assumptions to differentiate a crease from a valley distinctively. Some of the 

hypotheses presented by other researchers include observing the essential characteristics of a crease such as a length, 
width, pixel intensity, etc [12, 13, 30, 31, 32 and 33]. For instance, Gottschlich et al. [14] provided a novel method for 

OF estimate based on traced ridge and valley lines. This method is resistant to perturbations caused by scars, wetness, 
pollution, or finger dryness, for example. The line-sensor method is compared to a gradient-based approach and a 

multiscale directional operator in terms of performance. Experiments with simulated scar noise drawn on top of good 
quality fingerprint pictures from the FVC2000 and FVC2002 databases are used to test its resilience. Lastly, the 

effectiveness of the line-sensor-based method is demonstrated on 60 generally poor quality fingerprint images from the 

FVC2004 database. Wu et al. [10] studied a novel pattern in the fingerprint called crease, a kind of stripes irregularly 
crossing the standard fingerprint patterns (valleys and ridges). Wrinkles will cause spurious minutiae by using 

conventional feature detection algorithms, decreasing the recognition rate of fingerprint identification. The author 
creates an optimum detector and uses a multi-channel filtering framework to identify wrinkles in various orientations 

by expressing the crease with a parameterized rectangle. PCA is applied in each channel to derive rectangle parameters 

from raw detected data. Jian et al. [3] proposed an innovative method for crease detection and correction based on 
minutia density distribution. From Minutia Density distribution, creases are separated from others and then classified 

into SODCAs and LODCAs. The orientation field distribution differs significantly, and the pseudo minutiae pairings are 
hard to unite in two kinds of crease areas. In SODCAs, we adopt Least Deviation for minutiae pairing and stepwise 

approximate for reconnections. In LODCAs, the Normal calibration technique and the triangular constraint method are 

more suitable. The results confirm that the algorithm can repair and detect creases efficiently, and the recognition 
accuracy enhances significantly with wee supplementary calculations. Chauhan et al. [15] searched the use of crease 

features for fingerprint classification. Experiments are conducted on the Hong Kong PolyU high-resolution fingerprint 
database DBII, which is open to the public. The experimental results are very supportive and show that creases have 

huge potential to enhance the performance of fingerprint classification. Chen et al. [16] proposed a new algorithm to 
utilize minutiae for fingerprint recognition. The orientation field of a fingerprint is reconstructed from minutiae and 

employed in the matching step to improve the system's performance. First, we use interpolation in the sparse area to 

show “virtual” minutiae, and then we use an orientation model to rebuild the orientation field from all “virtual” and 
“real” minutiae. The reconstructed orientation field matching and traditional minutiae-based matching are combined 

using a decision fusion approach. The proposed strategy can generate more accurate results than existing methods 
since the orientation field is an essential global property of fingerprints. Bian et al. [4] devoted to reviewing and 

categorizing many Fingerprint orientation field (FOF) estimation techniques introduced in the specialized literature, 

focusing on the most modern work in this area. Existing FOF estimation techniques can be grouped into three categories: 
mathematical models-based methods, gradient-based methods, and learning-based techniques. Explaining and 

identifying the advantages and limitations of these FOF estimation methods is of significant significance for fingerprint 
identification because only a complete understanding of the nature of these methods can shed light on the essential 

issues for FOF estimation. The authors present a comprehensive discussion and analysis of these methods concerning 
their advantages and limitations. They have also handled tests utilizing publically available competition datasets to 

efficiently compare the achievement of the most relevant algorithms and techniques. A new fingerprint orientation field 

reconstruction approach was presented by Weixin et al. [17]. The main goal of the technique is to reorient the ridge 
using orthogonal polynomials in two discrete variables and the best quadratic approximation. Using the best quadratic 

approximation provided by orthogonal polynomials in two discrete variables in the sine domain, reconstruct the ridge 
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orientation field after first estimating the local region orientation using linear projection analysis (LPA) based on the 

vector set of point gradients. The suggested method can more accurately and robustly estimate the FOF of low-quality 
fingerprint pictures with significant noise areas. Gupta et al. [27]  a new approach that takes into account the details 

has been proposed. For the fingerprint reconstruction, consider density and the orientation field direction. For the 
analytical outcomes and to test the suggested approaches for fingerprint reconstruction, the public domain datasets 

Fingerprint Identification Competition 2002 (FVC2002) and Fingerprint Verification Competition 2004 (FVC2004) have 

been employed. Brancati et al. [28] offerd a new method for reconnecting broken ridges in fingerprint photographs in 
this paper. The technique determines ridge direction by using a discrete directional mask and the gray-level standard 

deviation. The obtained direction map is smoothed by counting the occurrences of the rules in a suitably broad window. 
After that, the fingerprint pictures are binarized and thinned. A morphological transformation guides the process of 

creating linking routes to connect fractured ridges. 

One immediate result discovered when researching the structural problems caused by wrinkles is that wrinkles 
produce a large number of pseudo minutiae. The minutiae number is much higher than the minutiae number in normal 

ranges of the same size. As a result, we offer a unique method for detecting and reconstructing wrinkles in fingerprint 
images based on the Minutia Density distribution (MDD). The results reveal that the approach may effectively witness 

Minutia pairing and rebuild the next point of ridges. 
 

RECONSTRUCTION CREASE FOR FINGERPRINT IMAGES 

 There are numerous approaches that may be broadly categorized as gradient [18–20], orientation field modeling 
methods [4, 21, 22], neural network approach [23, 24], and ridge projection method [25, 26]. Many individuals have 

worked on the topic of fingerprint ridge orientation. 
 

DETECTION OF WRINKLE 

A small amount of false or missing minutiae will cause a dramatic decline in accuracy for a minutiae-based algorithm. 
The creases will sever distinct ridges, and a sequence of pseudo-minutiae will be introduced. This so-called pseudo-

minutiae typically takes the form of endpoints; because the wrinkle cuts ridges, one or more endpoints may be born on 
either side of the crease. The fact that the crease areas frequently lack contrast only complicates matters further. The 

background, valleys, and ridges are difficult to separate. Some initially parallel ridges that cross each other in crease 
areas might create pseudo-bifurcates or even pseudo-singular points, as seen in Fig. 1. (c). In conclusion, creases will 

alter the local structure, create fictitious details, and change the overall design, including orientation and frequency field 

distribution. The pseudo-minutiae must be connected correctly, with fewer errors between distinct creases or more 
common ridges. Reconnections between these details will lessen the damage to the fingerprint's original structure. 

According to Zhou J et al., the wrinkles maintain their stability for an extended period, making them useful as 
independent features and different characteristics for fingerprint matching [11].  Finding creases and precisely 

identifying their classification must come first. The minutia density is the number of minutiae in a particular area after 

minutia extraction (MD). The MD values are tiny and the minutia distribution is dispersed in public spaces. The pseudo 
minutiae result in a much bigger MD in wrinkle zones. We can now identify big MD areas as crease prospects. According 

to the distribution of the orientation field around the target point, we sketch a fixed size G * K orthogonal box, as 
illustrated in Fig. 2. A straight orientation field defines the edge G. The orientation field is vertical to the edge K. 

 

 
 

 
 

 
 

 

 
 

 
 

Figure 1. (a) A distinct image (b) Image filtering (c) Extracted minutiae from the fingerprint 

The G, K values are related to the wrinkle's length and breadth. If the numbers are too small or too great, the differences 
in the crease and common sections will become blurry. The wrinkle candidate region is indicated if the MD value at 
position (𝑥, 𝑦) is behind THmd. 
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Figure 2.  The MD calculation diagram 

                          
                            𝑇𝐻𝑚𝑑 = 𝑛𝑢𝑚/(𝐺. 𝐾)                       (1) 

Zhou et al. [11] and Jian et al. [3] set some limitations for the crease model, which can improve screening out accurate 

wrinkles from candidates, as shown below: 
𝑤 >  𝑇𝐻1,   𝑙 >  𝑇𝐻2, 𝑎𝑛𝑑 𝑙 /𝑤 > 𝑇𝐻3          (2) 

𝑎𝑣𝑔{𝐿(𝐶𝑥, 𝐶𝑦, 𝑙, ∅)} > 𝑇𝐻4                              (3) 

∅ > 𝑇𝐻5                                                            (4) 

 Where 𝐿(𝐶𝑥, 𝐶𝑦, 𝑙, ∅) represents the wrinkle curve, (𝐶𝑥, 𝐶𝑦 ), 𝑤, 𝑙 and ∅ are the middle points coordinate, width, length, 

and wrinkle orientation 𝐿, individually. Each avg {𝐿(𝐶𝑥, 𝐶𝑦, 𝑙, ∅)} indicates average grayscale of the wrinkle 𝐿. ∅ is the 

orientation variance among the wrinkle curve and regular ridges. TH1, TH2,TH3,TH4, and TH5 are all tentative values. 

The wrinkle detection schematic description is presented in Fig. 3. 
 

 

 
 

 
 

 
 

 

 
 

Figure 3. (a) Target fingerprint image, (b) Large MD areas in the image shown as blue strips 
 

Wrinkles' Reconstruction and Repair 

We deal with the ridges and creases of a fingerprint in this section. The objectives are to calculate the separation 
between two pairs of fictitious minutiae and reconstruct ridges. We present our strategy in two primary steps: 

Step 1: Pseudo of Minutiae Pairing  
Pseudo-minutiae are shown in almost identical amounts in Fig. 5. This zone has eight pseudo-minutiae that are 
designated separately as A1 -A4 and a1-a4, 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

Figure 4. Diagram of eight ridge minutiae 
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The two orientation values of the minutiae pairing, Ø1 and Ø2, the distancepm between them, and the angle between 

the x-axis and two-point connection are the four key parameters for each pairing sample. Since the pseudo minutiae, 
as previously indicated, are almost equivalent, we assume that the angle is constant, meaning that the orientation 
values, Ø1 andØ2, are constant. Now, we use the following equation to determine the separation between two paired 

ends of pseudo minutiae. 
 

2

1 1

 (ADistan )ce
M N

k z

k z

pm a
= =

= −
                           (5) 

 

Where Distancepm the distance between two pairing ends of pseudo minutiae is, 1 2 3{A ,A ,A ,...,A }kA =
 

1 2 3{ , , ,..., }za a a a a=
  is the set of end ridge and the set of an opposite ridge, individually.  According to Equations (5) 

then we get stacks which are defined as follows 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

Figure 5. Diagram of Stacks 
Subsequently, we select the most negligible value that satisfies Eq. (5) constraints, then, we can obtain  𝐴1 −  𝑎1, 𝐴2 −
 𝑎2, 𝐴3 −  𝑎3, and 𝐴4 −  𝑎4 minutiae pairs. Between two ridgelines, the distance varies from 5 to 23 pixels [11-14]. The 

dotted line in Fig.6 indicates the ridgeline's extension line with the direction, whereas the solid line denotes the 
ridgeline's standard line at point 𝐴2. Points 𝐴3 and 𝐴2  are on opposite sides of the regular line, however at point 𝑄, the 

normal line inserts a ridgeline. On the same ridgeline as Point 𝑄 and 𝐴3. Now, if the Euclidean distance between points 

C and A is less than 23 pixels, we can deduce that they are also on the same side of the standard line. Points 𝑎2, 𝑎1, 

and 𝑎3 are the remaining candidates. They're all on the opposite side of 𝐴2. The closest point is chosen as 𝐴′𝑠 partnering 

point based on distance estimates. Similarly, 𝐴1. − 𝑎1 and 𝐴3. − 𝑎3pairs can be found. 

 

 
 

 
 

 

 
 

 
 

 
 

 

Figure 6: Distribution of fingerprints and minutiae 
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Step 2: Reconstruction of Minutiae pair  

 
After pairing, now we will choose the next points based on midpoint criteria of a line segment with endpoints. Our steps 

are explained below: 
1. We choose a point (i.e., next point) in the middle of the curve between minutiae paring, as shown in Fig. 9, to 

get 𝑥 and 𝑦 values of the next point based on the following formula. 

𝑀 (
𝑥1 + 𝑥2

2
,
𝑦1 + 𝑦2

2
)                       (6) 

 
For instance, we assume that the 𝐴1(𝑥1, 𝑦1) = (−3,2) and 𝑎1(𝑥2, 𝑦2)= (5, -2). 

 

𝑀 = (
−3 + 5

2
,
2 + (−2)

2
)           

      

𝑀 = (
2

2
,
0

2
)   𝑀(1,0) 

Now, the midpoint coordinates between 𝐴1 and 𝑎1 are (1, 0) as shown in Fig. 9. 

 

 
 

 
 

 
 

 

 
 

 
Figure 9. Determine the next minutiae point 

 
2.  We find the next point 𝑁𝑝2 between the old points (calculated in the previous  step(𝑁𝑝1)) and 𝐴1 based on 

Equ.6 as shown in Fig.10. 

 
 

 
 

 

 
 

 
 

 

Figure 10. Determine the 𝑵𝒑𝟐 point 

 
3.  We find the next point 𝑁𝑝2 between the old points (calculated in the previous step(𝑁𝑝1)) and 𝑎1 based on Equ.6 

as shown in Fig. 11. 

 
 

 
 

 

 
 

 
 

 

 
Figure 11. Determine the 𝑵𝒑𝟑 point 

 
The spurious minutiae have all been eliminated in Fig. 9. The orientation field and frequency field are then recalculated. 

In the crease-unrepaired image, the orientation field is twisted, whereas, in the restored image, it is more consistent 

with texture. As a result of the crease-repair, the algorithm's accuracy increased significantly. 
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Figure 12. The detection and correction of creases is shown schematically in this diagram. Endpoints 

are coloured blue, bifurcations are coloured green, and core points are coloured red. (a) Use a grayscale 
fingerprint image as your input. (b) Blue stripes indicate where the folds are. c) The unrepaired image's 

orientation field (d) The image's restored orientation field. 
 

EXPERIMENTAL OUTCOMES  
 The experiments in this section compare the performance of our algorithm to methods elaborated in the Zhou J. method 

[11], conventional method, and Jian W. method [3]. Experiments with the three methods listed above. The database 

contains 100 individual fingers, 20 of which are from the same finger. Algorithms are evaluated using the False Reject 
Rate (FRR), False Accept Rate (FAR), ZeroFAR, ZeroFRR, ERR, FAR1000, and time-cost. The results show that the 

method may improve the reconstruction of the wrinkles of fingerprint by determining the next point of minutiae pairing.   
The results (Fig. 13) demonstrate that our strategies significantly improve performance. In the low FAR area, our 

technique surpasses Zhou J, but in the high FAR area, it is defeated. In actual applications, FAR must be kept to a 

minimum. In terms of ERR, ours is (5.372%) higher than Jian's (5.482%), Zhou's (5.722%), and the usual technique 
(5.852%), as indicated in Table I. Our method is less computational than Zhou J's and Ian W. since we don't use any 

additional convolution operations. As a result, when compared in an experiment, in our method, time-cost (219.014ms) 
outperforms Jian's (223.013ms) and Zhou J's (347.423ms). Because of its superior performance in low FAR areas and 

minimal computation, our method outperforms others in practice. 
Table I. Four distinct approaches performance 

 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
Figure 13. Performance of Four approaches 

 

 
 

 
 

Performance Conventional 
method[3] 

Zhou J 's 
method[11] 

Jian W. 
method[3] 

Our method 

Time-cost 206.9335ms 347.423ms 223.013ms          219.014ms 

ZeroFAR 0.3854 0.2276 0.2192 0.2085 

ZeroFRR 0.9406 0.9126 0.9141 0.9120 

ERR 0.05852 0.05722 0.05482 0.05372 

FAR1000 0.1616 0.1096 0.1064 0.1053 
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CONCLUSION 

In this study, we provide a novel technique for reconstructing the fingerprint. This research examined fingerprint image 
wrinkle detection. The two-step procedure serves as the foundation for the reconstruction of fingerprints given in this 

work, enhancing two areas of wrinkle reconstruction performance in recognizing fingerprints. The distance between 
pairs of pseudominuae was first estimated. Second, by figuring out the next point of minutiae pairing, we rebuild the 

ridges based on the midway criteria of a line segment with ends. The findings demonstrate that artificial minutiae can 

be used to recreate ridges to improve fingerprint identification. For upcoming work, we'll concentrate on combining 
different methodologies to achieve a improved performance of fingerprint identification with creases. 

 
REFERENCES 

[1] M. NarayanMohanty and R. Sikka, "oReview on fingerprint-based identification system," Materials Today: 

Proceedings, 2021. 
[2] L. N. Darlow and B. Rosman, "Fingerprint minutiae extraction using deep learning," in 2017 IEEE International Joint 

Conference on Biometrics (IJCB), 2017, pp. 22-30: IEEE. 
[3] W. Jian, Y. Zhou, H. Liu, and N. Zhu, "Crease Detection and Repair Based on Minutia Density Distribution," in 

2019 IEEE 11th International Conference on  Communication Software and Networks (ICCSN), 2019, pp. 446-451: IEEE. 
[4] W. Bian, D. Xu, Q. Li, Y. Cheng, B. Jie, and X. Ding, "A survey of the methods on fingerprint orientation field 

estimation," IEEE Access, vol. 7, pp. 32644-32663, 2019. 

[5] R. Gupta, M. Khari, D. Gupta, and R. G. Crespo, "Fingerprint image enhancement and reconstruction using the 
orientation and phase reconstruction," Information Sciences, vol. 530, pp. 201-218, 2020. 

[6] A. A. ABBOOD, G. SULONG, A. M. TAHA, and S. U. PETERS, "A new technique for estimating and enhancing 
orientation field of fingerprint image," Journal of Theoretical and Applied Information Technology, vol. 96, no. 7, 2018. 

[7] C. Yuan and X. Sun, "Fingerprint liveness detection using histogram of oriented gradient based texture feature," 

Journal of Internet Technology, vol. 19, no. 5, pp. 1499-1507, 2018. 
[8] E. P. Wibowo, S. A. Harseno, and R. K. Harahap, "Feature Extraction Using Histogram of Oriented Gradient and 

Hu Invariant Moment for Face Recognition," in 2018 Third International Conference on Informatics and Computing 
(ICIC), 2018, pp. 1-5: IEEE. 

[9] D. Zabala-Blanco, M. Mora, R. J. Barrientos, R. Hernández-García, and J. Naranjo-Torres, "Fingerprint 
Classification through Standard and Weighted Extreme Learning Machines," Applied Sciences, vol. 10, no. 12, p. 4125, 

2020.  

[10]  C. Wu, J. Zhou, Z.-q. Bian, and G. Rong, "Robust crease detection in fingerprint images," in 2003 IEEE 
Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings., 2003, vol. 2, pp. II-

505: IEEE.  
[11] J. Zhou, F. Chen, N. Wu, and C. Wu, "Crease detection from fingerprint images and its applications in elderly 

people," Pattern Recognition, vol. 42, no. 5, pp. 896-906, 2009. 

[12]  M. Sarfraz, "Introductory Chapter: On Fingerprint Recognition," in Biometric Systems: IntechOpen, 2021 
[13]  J. M. Singh, A. Madhun, G. Li, and R. Ramachandra, "A survey on unknown presentation attack detection for 

fingerprint," arXiv preprint arXiv:2005.08337, 2020. 
[14]  C. Gottschlich, P. Mihailescu, and A. Munk, "Robust orientation field estimation and extrapolation using 

semilocal line sensors," IEEE Transactions on Information Forensics and Security, vol. 4, no. 4, pp. 802-811, 2009. 

[15] N. Chauhan, M. Soni, V. Anand, and V. Kanhangad, "Fingerprint classification using crease features," in 2016 
IEEE Students’ Technology Symposium (TechSym), 2016, pp. 56-60: IEEE. 

[16] F. Chen, J. Zhou, and C. Yang, "Reconstructing orientation field from fingerprint minutiae to improve minutiae-
matching accuracy," IEEE Transactions on image processing, vol. 18, no. 7, pp. 1665-1670, 2009. 

[17]  [17] W. Bian, Y. Luo, D. Xu, and Q. Yu, "Fingerprint ridge orientation field reconstruction using the best 
quadratic approximation by orthogonal polynomials in two discrete variables," Pattern recognition, vol. 47, no. 10, pp. 

3304-3313, 2014. 

[18]  Y. Wang, J. Hu, and F. Han, "Enhanced gradient-based algorithm for the estimation of fingerprint orientation 
fields," Applied Mathematics and Computation, vol. 185, no. 2, pp. 823-833, 2007. 

[19]  C. Gottschlich, E. Marasco, A. Y. Yang, and B. Cukic, "Fingerprint liveness detection based on histograms of 
invariant gradients," in IEEE international joint conference on biometrics, 2014, pp. 1-7: IEEE. 

[20]  L. Wieclaw, "Gradient based fingerprint orientation field estimation," Journal of Medical Informatics & 

Technologies, vol. 22, 2013. 
[21]  D. Chen, X. Ji, F. Fan, J. Zhang, L. Guo, and W. Meng, "Comparative analysis of fingerprint orientation field 

algorithms," in 2009 Fifth International Conference on Image and Graphics, 2009, pp. 796-801: IEEE. 
[22]  S. Jirachaweng, Z. Hou, J. Li, W.-Y. Yau, and V. Areekul, "Residual Analysis for Fingerprint Orientation 

Modeling," in 2010 20th International Conference on Pattern Recognition, 2010, pp. 1196-1199: IEEE. 
[23] D. T. Meva, C. Kumbharana, and A. D. Kothari, "The study of adoption of neural network approach in fingerprint 

recognition," International Journal of Computer Applications, vol. 40, no. 11, pp. 8-11, 2012. 

[24] H. Fan, P. Su, J. Huang, P. Liu, and H. Lu, "Multi‐band MR fingerprinting (MRF) ASL imaging using artificial‐
neural‐network trained with high‐fidelity experimental data," Magnetic resonance in medicine, 2021. 



European Journal of Research Development and Sustainability (EJRDS) 
__________________________________________________________________________ 

36 | P a g e  

[25] E. Jarocka, J. A. Pruszynski, and R. S. Johansson, "Human touch receptors are sensitive to spatial details on 

the scale of single fingerprint ridges," Journal of Neuroscience, vol. 41, no. 16, pp. 3622-3634, 2021. 
[26] J. Priesnitz, C. Rathgeb, N. Buchmann, C. Busch, and M. Margraf, "An overview of touchless 2D fingerprint 

recognition," EURASIP Journal on Image and Video Processing, vol. 2021, no. 1, pp. 1-28, 2021. 
[27]     R. Gupta, M. Khari, D. Gupta, and R. G. Crespo, "Fingerprint image enhancement and reconstruction using the 

orientation and phase reconstruction," Information Sciences, vol. 530, pp. 201-218, 2020. 

[28]    N. Brancati, M. Frucci, and G. S. d. Baja, "Reconnecting broken ridges in fingerprint images," in International 
Conference on Image Analysis and Processing, 2009, pp. 739-747: Springer. 

[30]    T.-N. Do, "Training neural networks on top of support vector machine models for classifying fingerprint images," 
SN Computer Science, vol. 2, no. 5, pp. 1-12, 2021. 

[31] F. Alonso-Fernandez, J. Fierrez-Aguilar, and J. Ortega-Garcia, "A review of schemes for fingerprint image quality 

computation," arXiv preprint arXiv:2207.05449, 2022. 
[32] A. F. Y. Althabhawee and B. K. O. C. Alwawi, "Fingerprint recognition based on collected images using deep learning 

technology," IAES International Journal of Artificial Intelligence, vol. 11, no. 1, p. 81, 2022. 
[33]  A.-M. Dincă Lăzărescu, S. Moldovanu, and L. Moraru, "A Fingerprint Matching Algorithm Using the Combination of 

Edge Features and Convolution Neural Networks," Inventions, vol. 7, no. 2, p. 39, 2022. 
 

  

 
 


