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Let be a Cartesian product, a Hilbert space of quadratically integrable functions on . Suppose that a single 

measure is chosen, i.e. (  ( )
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Here, nuclei and ),,(),,( 11 pqtKtqpK = ),,(),,( 22 qtpKtqpK = real-significant  continuous 

functions on ( ) .
3T  

Lemma 1.  The operator K operating in Hilbert space is linear, limited, and self-conjugated. ))(( 2
2

TL

  

Proof of Lemma 1. Let be arbitrary elements. Then from the linearity of the integral we have , C  

( )( )2

2,f g L T  

 

( )( )( )

( ) ( )

1 1

1 1

1 1

, ( , , )( ( , ) ( , ))

( , , ) ( , ) ( , , ) ( , )

( , ) ( , ).

T

T T

K f g p q K p q t f t q g t q dt

K p q t f t q dt K p q t g t q dt

K f p q K g p q



 

   

 

 

+ = + =

= + =

= +



   

Similarly, the linearity of the operator . An operator as a sum of linear operators is a linear operator. 2K K  
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Now let's show the limitation of the operator . Denote by . Let , then 1K 1
, ,

max ( , , )
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In the latter equality, using Hölder's inequality, we have 
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From here for anyone we get ( )( )2
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1 .K f M f  

Similarly, the limitation of the operator . The amount of limited operators is a limited operator, therefore limited.

2K K  

 To prove the self-adhesion of the operator, it is enough to show equality K  

( , ) ( , ),Kf g f Kg=  for any ( )( )2
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First we will prove the self-adhesion of the operator .  Let be arbitrary elements. Then 1K ( )( )2
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By replacing the variables and in the integral on the right side of the last equality, we get t p= p s=  
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Hence, by virtue of the condition, we have 1 1( , , ) ( , , ),K p q t K t q p=  
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Thus, the self-conjugation of the operator . Similarly, the self-conjugation of the operator is proved. The sum 

of self-adjoint operators is a self-adjoint operator. Therefore, the operator is also self-adjoint. 1K 2K 1 2K K K= +  

Lemma 1. Proven. 

Denote by the spectrum of the operator . )(A A  

The article considers the model operator K consisting of the sum of two partial-integral operators and finds an 

essential spectrum of this operator )(Kess  

 Let the operator act in space according to the formula )(zT ))(( 2
2

TL  
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where is the resolvent of the operator . 2,1,)()( 1 =−= − izIKzR ii 2,1, =iKi  

For operator K is the case. 

Lemma 2. ))()((\ 21 KKCzЧисло   is the eigenvalue of the K operator if and only if it is the 

eigenvalue of the operator  1= )(zT . 

Using lemma 1 and Fredholm's analytic theorem, applying methods similar to those in [1] and [2,3],we get. 

Theorem 1.  For the spectrum of the operator K there is an equality )(K ).()()( 21 KKKess  =  
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Note that the spectra and operators, respectively, and in detail studied in the work [2]. )( 1K )( 2K 1K

2K  

Let A be a self-conjugated bounded operator operating in Hilbert space and whose subspace of space whose 

elements satisfy the condition H ),(sup),( AessA   H .0),,(),(  ffffAf   
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The number coincides with the number of eigenvalues (taking into account the multiplicity) of the operator A 

lying to the right of . Let's denote through the positive square root of the operator of the positive operator A. ),( An 

 2/1A  

Lemma 3. For each, operators )(Kfinz ess zIK −1   zIK −2 are both positive operators and there 
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where each is a compact operator. )(12 zK )(Kfinz ess  
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Noticing the existence of an operator everywhere in Hilbert space Hence the representation 0)( Kfin ess
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It is easy to verify that the operator is a compact operator [2]. Therefore, according to (2) we have the 

compactness of the operator for all . From here we can easily get (1). 12 )
1
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z
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 Note that the Biermann-Schwinger principle plays an important role in determining the finiteness or 

infinity of the discrete spectrum of the operator in question[4,5]. 
 Here is the Biermann-Schwinger principle for the operator K, which we will prove by the same method 

as work [2,3] 

 Theorem 2.   For each, equality is performed fKinz   
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Reasoning similarly, we get the opposite statement 
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At the same time, according to the formula (1) 
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Again applying the variational principle, we have 
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