

Available Online at: https://www.scholarzest.com Vol. 1 No. 1, September 2020, ISSN: 2660-5643

EFFECT OF FEEDING POLYLATHIA LONGIFOLIA LEAF MEAL AS PARTIAL REPLACEMENT OF WHEAT OFFAL

Oluwafemi, R.A

Department of Animal Science, faculty of Agriculture, University of Abuja. P.M.B. 117, Abuja. Nigeria E-mail: <u>oluwafemi.adebisi@uniabuja.edu.ng</u>

Grace, Funmi Reuben

Department of Animal Science, faculty of Agriculture, University of Abuja. P.M.B. 117, Abuja. Nigeria

Art	icle history:	Abstract:
Received	August 26 th 2020	This study examined some haematological and serum biochemical Indices of
Accepted:	September 11 th	broiler chickens fed <i>Polyalthia longifolia</i> leaf meal (PLM) as partial replacement
	2020	of wheat offal. A total number of 250 broiler chickens were used in the
Published:	September 30 th	experiment which lasted for 8 weeks. They were randomly allotted to five
	2020	treatment groups with ten (10) birds per treatment and replicated five times in
		a Completely Randomized Design (CRD). Treatment 1 (T1) contained 0 % PLM,
		while PLM was used to replace W/O at 5 % (T2), 10% (T3), 15 % (T4) and 20
		% (T5) respectively. Feed and water were supplied ad-libitum while standard
		routine management was observed throughout the period of the experiment.
		Haematological parameters covered Pack cell volume (PCV), red blood cell (RBC), haemoglobin (Hb), mean corpuscular volume (MCV), mean corpuscular
		haemoglobin (MCH), mean corpuscular heamoglobin concentration (MCHC),
		white blood cell (WBC) and its differentials while serum biochemistry includes
		total protein, globulin, albumin, calcium, phosphorus, serum glutamic phospho
		transaminase (SGPT) and serum glutamic oxaloacetate (SGOT). The results
		from this study showed no significant difference ($P > 0.05$) among all the
		haematological parameters measured. Similarly, PLM did not influence (P >
		0.05) total protein, globulin, albumin, calcium and phosphorus. SGPT and SGOT
		were significantly different among the treatments (P<0.05). It was
		recommended that <i>Polyalthia longifolia</i> leaf meal can be used in growing broiler
		chickens as feed supplement. This will enhance satisfactory performance,
		without causing any deleterious effect on the health of the animal.

Keywords: broiler chicks, heamatology, serum, Polyalthia longifolia

1. INTRODUCTION

The poultry industry in the developing countries is facing some challenges, one of which is increase in the cost of feed because of high prices of protein and energy sources (Abbas, 2013). Livestock feed costs in developing countries are a continuing challenge. The high and increasing prices for animal feeds have compelled researchers to direct their attention to non-conventional feed sources like *Polyalthia longifolia*. *Polyalthia longifolia* (Sonn) belongs to the family of Annonaceae, it is an evergreen plant commonly used as an ornamental street tree due to its effectiveness in combating noise pollution (Kar S *et al.*, 2013). The genus *Polyalthia* includes about 120 species occurring mainly in Africa, South and South – Eastern Asia, Australia and New Zealand. Several researches have reported the use of this plant for its significant biological and pharmacological activities such as antibacterial, antifungal, antitumor, anti-ulcer, anti-diabetic and antioxidant (Prateek *et al.*, 2014). It is also believed to be a potential livestock feed material that will serve dual purposes of feed material and also a therapeutic material for the animals. Therefore, to sustain interest, there is need to evaluate many feed resources, especially the non-conventional feed materials that has little or no competitive demand by man especially as source of human food.

Nigeria's rapidly growing population has informed the need to increase livestock production to satisfy her animal protein requirement. Contributions of beef and poultry products to this national dilemma has been indeed marginal, providing succor to only a select few who mostly are urban and peri-urban dwellers, while leaving about 90% of the populace who reside in the hinterlands on consumption of less than 10g as against recommended 35g animal protein per day (Adisa *et al.*, 2010). This wide nutritional gap has fueled the need to intensify the production of some livestock species to address the low per capita animal protein intake by Nigerians. What inspired the interest in broiler birds are their short generation interval, good meat quality and acceptability by all.

Several studies have reported on the oral acute toxicity of *P. longifolia* leaf in mice (Nair *et al*, 2009); Alagbe (2017) also evaluated the effect of Polyalthia longifolia leaf meal as a phytogenic feed additive in the diet of broiler chicks. But there is less information on the addition of dried *P. longifolia* leaf meal in the diet of broilers. A timely evaluation of its effects as a feed additive in broiler chickens feed will provide useful information relating to the tolerable rate of its inclusion in the diet of birds especially broilers. Therefore, this study was conducted to evaluate the effects of various levels of mature *Polyalthia longifolia* leaf meal as a partial replacement for wheat offal on the nutrient retention, immune response and serum biochemistry of broiler chicks fed on graded levels of *P. longifolia* leaf meal diet.

2. MATERIALS AND METHODS

2.1 LOCATION AND DURATION OF THE STUDY

The study was carried out at the poultry section of the Teaching and Research Farm of the Faculty of Agriculture University of Abuja, Abuja Nigeria. The study carried out lasted for 8 weeks. The study territory exist in the southern guinea savanna ecological zone of Nigeria, geographically situated within latitude $08^{0}25'$ and 9^{0} 20' N and longitude 06^{0} 45' and $07^{0}39'$ E.

2.2 COLLECTION AND PROCESSING OF POLYALTHIA LONGIFOLIA LEAF

Fresh, healthy and mature *P. longifolia* leaves were obtained in Kuje, Kuje Area Council of the Federal Capital Territory. The leaves were washed with running tap water to remove the dirt's, it was later air dried separately until constant weights were obtained and made to meal using a hammer mill. The sample was later stored in an air tight container at 4°C for further analysis.

2.3 EXPERIMENTAL BIRDS AND MANAGEMENT

Two hundred and fifty (250) day old Ross 308 broilers of mixed sex were obtained from a commercial hatchery in Ibadan. The chicks were weighed individually at the beginning of the experiment and wing banded. They were assigned into five dietary treatments with five replicates of ten (10) birds each. Anti-stress was added into their drinking water. Heat was supplied through electric bulb continuously to maintain an initial brooding temperature of 34°C for the first week of age with gradual reduction by 2°C per week. Vaccines were administered according to the prevailing vaccination schedule in the environment. Clean feed and water was provided unrestricted throughout the experimental period which lasted for 8 weeks.

2.4 EXPERIMENTAL DIETS AND DESIGN

Birds were fed five experimental diets with *Polyalthia longifolia* leaf meal (PLM) replacing wheat offal at 0%, 5%, 10 %, 15 % and 20 % respectively in completely randomized design.

2.5 PARAMETERS MEASURED

The initial body weight was recorded at the beginning of the experiment and weekly thereafter, total feed and water consumption, mortality were recorded daily throughout the experimental period.

3. HAEMATOLOGICAL AND SERUM BIOCHEMICAL ANALYSIS

Blood samples were collected very early in the morning from the wing vein from three (3) randomly selected birds per replicate into a 5 ml sterile syringe using 23 gauge needles and transferred into an ethylene diamine tetra acetic acid (EDTA) bottle. Haematological parameters: pack cell volume (PCV), red blood cell (RBC), haemoglobin (Hb), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), mean corpuscular volume (MCV), white blood cell (WBC) and its differentials were analyzed using an automated machine (Sysmex, Model KU-30 HG, India).

Serum analysis was carried out using bottles free from EDTA, blood were analyzed for total protein, albumin, globulin, glucose, cholesterol, creatinine, alanine transaminase (ALT) and aspartate transaminase (AST) were assayed using diagnostic kit manufactured by Merck India Ltd (Model PS-09R) as described by Olubukola *et al.* (2015).

4. CHEMICAL ANALYSIS

Proximate compositions of experiment diet were determined by using official method of analysis by AOAC (2000). Phytochemical composition of tannins, alkaloids, saponins, flavonoids, phenols, oxalate, glycosides, steroids and terpenoids were estimated using methods described by Atamgba *et al.* (2015), Harbone (1973), Shabbir et al. (2013), Odebiyi and Sofowora (1978), Boham and Kocipai (1974).

5. STATISTICAL ANALYSIS

All data were subjected to one -way analysis of variance (ANOVA) using SPSS (18.0) and significant means were separated using Duncan multiple range tests (Duncan, 1955). Significant was declared if $P \leq 0.05$.

Ingredients	$T_1 0 \%$	T ₂ 5 %	T ₃ 10 %	T₄15%	T ₅ 20%
Maize	50.00	50.00	50.00	50.00	50.00
PLM	0.00	0.35	0.07	1.05	1.40
Wheat Offal	7.00	6.65	6.93	5.95	5.60
G/Cake 44%	5.50	5.50	5.50	5.50	5.50
Soya cake	30.05	30.05	30.05	30.05	30.05
Fish meal	2.00	2.00	2.00		
(imported)			. = 0	2.00	2.00
Limestone	1.50	1.50	1.50	1.50	1.50
Bone meal	3.00	3.00	3.00	3.00	3.00
Salt	0.30	0.30	0.30	0.30	0.30
Vit TM Premix	0.25	0.25	0.25	0.25	0.25
Lysine	0.20	0.20	0.20	0.20	0.20
Methionine	0.20	0.20	0.20	0.20	0.20
Total	100.00	100.00	100.00	100.00	100.00
Calc. Analyses					
%CP	23.00	22.98	22.99	22.93	22.91
ME:Kcal/kg	2727	2728	2727	2730	2730
E:Prot ratio	118.59	118.73	118.62	119.02	119.16
EE %	4.59	4.58	4.59	4.56	4.55
CF %	4.71	4.74	4.72	4.80	4.83
Ca %	1.50	1.50	1.50	1.50	1.50
Avail P %	0.58	0.58	0.58	0.58	0.58
Ca : P ratio	2.60	2.60	2.60	2.60	2.60
Lysine %	1.43	1.44	1.43	1.44	1.44
Met + cys (%)	0.91	0.91	0.91	0.91	0.91

Table 1: Composition of experimental diet (Broiler starter) 5 – 8 weeks

Table 2: Chemical composition of experimental diet (Broiler finisher) 5-8 weeks

Ingredients	T ₁ (0%)	T ₂ (5 %)	T ₃ (10 %)	T ₄ (15 %)	T ₅ (20 %)
Maize	60.00	60.00	60.00	60.00	60.00
PLM		0.25	0.26	0.75	1.01
Wheat Offal	5.05	4.80	4.90	4.30	4.04
G/Cake 44%	1.50	1.50	1.50	1.50	1.50
Soya bean meal	26.0	26.0	26.0	26.0	26.0
Fish meal (imported)	2.00	2.00	2.00	2.00	2.00
Limestone	1.50	1.50	1.50	1.50	1.50
Bone meal	3.00	3.00	3.00	3.00	3.00
Salt	0.30	0.30	0.30	0.30	0.30
Vit TM Premix	0.25	0.25	0.25	0.25	0.25
Lysine	0.20	0.20	0.20	0.20	0.20

Methionine	0.20	0.20	0.20	0.20	0.20
Total	100.00	100.00	100.110	100.00	100.00
Calc. Analyses					
%CP	20.07	20.06	20.08	20.03	20.01
ME:Kcal/kg	2853	2854	2855	2855	2856
E:Prot ratio	142.15	142.29	142.24	142.55	142.69
EE %	4.40	4.40	4.40	4.38	4.38
CF %	4.14	4.16	4.18	4.20	4.22
Ca %	1.48	1.48	1.48	1.48	1.49
Avail P %	0.57	0.57	0.57	0.57	0.57
Ca : P ratio	2.60	2.60	2.60	2.60	2.60
Lysine %	1.27	1.27	1.27	1.27	1.27
Met + cys (%)	0.83	0.83	0.84	0.84	0.84

6.PROXIMATE COMPOSITION OF POLYALTHIA LONGIFOLIA LEAF MEAL (PLM)

Table 3 reveals the proximate composition of *Polyalthia longifolia* leaf meal. The diet contained 10.01 % crude protein, 19.70 crude fibre, 6.02 % total ash, 0.18 % ether extracts, 7.70 % moisture content and 59.39% nitrogen free extract. The result obtained is in agreement with the findings of Alagbe (2017) but contrary to the reports of Olafadehan et al. (2020); Ojewuyi et al. (2014) on the proximate analysis of mature Polyalthia longifolia leaves. The differences in the chemical analysis could be attributed to age of plants, processing method and geographical locations.

Parameters	% Composition			
Moisture content	7.70			
Crude Protein	10.01			
Crude fibre	19.70			
Ash	6.02			
Ether extracts	0.18			
NFE	59.39			
Energy (kcal/kg)	1510.0			

7.PROXIMATE COMPOSITION OF POLYALTHIA LONGIFOLIA LEAF MEAL

Table 4.3 showed the phytochemicals composition of the experimental diets. The result of the analysis of *Polyalthia longifolia* revealed 2.21 mg/100g tannins, 3.68 mg/100g saponins, 1.08 mg/100g alkaloids, 13.10 mg/100g flavonoids and 2.28 mg/100g phenol. Flavonoids > saponins > phenols > tannins > alkaloids. Alkaloids have been reported to perform various pharmacological activities including anti-malarial, anticancer, antihypertensive and antiarrhythmic activities (Sexena et al., 2013). Flavonoids have been suggested to be involved in antifungal, antidiarrheal and antioxidant activity (Cheeke 2000).Saponins play a key role in antimicrobial and anti-inflammatory activities (Soetan et al., 2006). Phenols are capable of scavenging free radicals to prevent disease in the body (Ojewuyi et al., 2014). However, all values were within the permissible range reported by Alagbe and Oluwafemi (2019).

Table 4: Phytochemical analysis of Polyalthia longifolia leaf meal

Parameters	Composition (mg/100g)
Tannins	2.21
Saponins	3.68
Alkaloids	1.08

Flavonoids	13.10
Phenols	2.28

8.HEMATOLOGICAL PARAMETERS OF BROILER CHICKS FED POLYALTHIA LONGIFOLIA LEAF MEAL

Hematological parameters of broiler chicks fed *Polyalthia longifolia* leaf meal is presented in Table 5. The pack cell volume (PCV), haemoglobin (Hb), red blood cell (RBC), Haemoglobin (Hb), red blood cell (RBC), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) values ranged between 26.50 - 28.00 %, 10.12 - 11.11 (g/dl), $2.88 - 2.90 (10^6 \mu l)$, 100.9 - 101.7 (fl), 54.50 - 57.00 (pg) and 39.80 - 39.47 (g/dl) were not significantly different among the treatments (P>0.05). White blood cell ranged between $(20.89 - 21.65 10^3 \mu l)$, lymphocytes $(12.40 - 12.60 10^3 \mu l)$ and monocytes $(0.05 - 0.08 10^3 \mu l)$ were not significantly (P>0.05) influenced by PLM. According to Zhou et al. (1999); Alagbe (2020) blood is vital in the transport of nutrients, gases and waste products around the body. Blood constituents change in relation to the physiological conditions of health (Togun et al., 2007). PCV, Hb and MCH are indexes used to ascertain the level of anaemia (Alagbe et al., 2020; Chineke et al., 2006) Red blood cells are involved in the transport of oxygen and carbon (IV) oxide in the body (Nse Abasi et al., 2014; Olatunji et al., 2015). WBC play a vital role in preventing entry of disease in the body by producing white blood cells (Iwuji and Hebert, 2012; Alagbe, 2017; Alagbe and Soares, 2018). However all values were within the physiological range for birds according to Talebi et al. (2005); Livingstone et al. (2020).Mohammad et al. (2016) reported a PCV and Hb range of 29.75 – 30.00 % and 10.00 – 10.88 (g/dl) in broiler chicks fed diet supplemented with garlic extract.

Parameters	T1	T2	Т3	T4	T5	SEM
PCV (%)	26.50	27.31	27.02	28.56	28.00	0.22
Hb (g/dl)	10.12	10.50	10.94	11.00	11.11	0.03
RBC ×10 ⁶ µl	2.88	2.56	2.70	2.65	2.90	0.02
MCV (fl)	100.9	100.8	100.5	103.1	101.7	0.51
MCH (pg)	54.50	54.00	54.08	56.60	57.00	1.22
MCHC (g/dl)	39.80	38.60	39.08	39.67	39.47	0.27
WBC×10 ³ µl	20.89	20.62	21.17	21.90	21.65	0.04
Differentials (10 ³ µl)						
Lymphocytes	12.40	12.08	12.67	12.76	12.60	0.10
Monocytes	0.08	0.07	0.08	0.05	0.07	0.01

Table 5: Haematological Parameters of broilers fed Polyalthia longifolia leaf meal

9. SERUM ANALYSIS OF BROILER CHICKS FED DIFFERENT LEVELS OF PLM

Table 5 revealed the serum biochemical parameters of broiler chicks fed different levels of PLM. Total protein, albumin, globulin, calcium and phosphorus values ranged between 2.85 - 2.93 (g/dl), 1.35 - 1.50 (g/dl), 1.42 - 1.53 (g/dl), 0.80 - 0.89 (mg/dl) and 102.7 - 106.1 (mg/dl) were not significantly (P>0.05) different among the treatments. SGPT (45.5 - 97.1 i.u/L) and SGOT (79.0 - 136.4 i.u/L) were significantly (P<0.05) influenced by PLM. Values were lowest in T5 and highest in T1, however all values were within the normal range reported for birds by Aldi-Hachesoo et al. (2012); Yakhkeshi et al. (2011).

The non-significant (P>0.05) differences observed in the total protein across the treatment are an indication that the protein reserve across the treatment is enough to support the growth of the animal. This is inconformity with the reports of Olabanji et al. (2007); Alagbe (2017) when miadiasin was fed to broiler chicks. The presence of calcium and phosphorus is important in many biochemical reactions and metabolic process in the body (Ojewuyi et al., 2014). SGPT and SGOT values reduced as the level of PLM increased in the diet, this signifies that PLM is non toxic and it had no deleterious effect on the health of the animal (Iyayi, 1994).

	,,					
Parameters	T1	T2	T3	T4	T5	SEM
Total protein (g/dl)	2.93	2.90	2.89	2.85	2.86	0.17
Albumin (g/dl)	1.40	1.50	1.43	1.35	1.44	0.01
Globulin (g/dl)	1.53	1.40	1.46	1.50	1.42	0.01
Calcium (mg/dl)	0.89	0.76	0.80	0.85	0.80	0.06
Phosphorus (mg/dl)	106.1	104.4	102.7	104.0	105.1	2.78
SGPT (iu/L)	97.1ª	67.0 ^b	65.4 ^b	46.8 ^c	45.5 ^c	0.04
SGOT (iu/L)	136.4ª	108.6 ^b	100.4 ^b	80.8 ^c	79.0 ^c	1.44

Table 5: Serum analysis of broiler chicks fed different levels of ATSM

Means in the same row with different superscripts differ significantly (P<0.05)

10. CONCLUSION

Feeding and cost of feeding is an important factor in livestock management. The need for alternative sources of feed ingredients to replace the conventional feed materials is become imperative now in the face of competing demands and consequent high cost of such conventional feed ingredients. Feed formulators are fast becoming conscious of the need to explore less utilized sources including *Polyalthia longifolia*, a tropical tree that has recently received significant attention in research. Therefore PLM could be introduced into poultry feed at 20 % without any deleterious effect on the health of the birds.

REFERENCES

- 1. Nse Abasi, N.E., Mary, E.W, Uduak, A and Edem, E.A.O. (2014). Haematological parameters and factors affecting their values. Journal of Agricultural Science. 2(1): 37-47.
- 2. Alagbe, J.O. (2017). Effect of dietary inclusion of *Polyalthia longifolia* leaf meal as phytobiotic compared with antibiotics on performance, carcass characteristics and haematology of broiler chicken. *Scholarly Journal of Agricultural Science*. 7(3):68-74.
- 3. Livingston, M.L., A.J. Cowieson , R. Crespo , V. Hoang , B. Nogal , M. Browning ,K.A. Livingston (2020). Effect of broiler genetics, age, and gender on performance and blood chemistry. Heliyon 6 (2020) e04400.
- 4. Alagbe, J.O. (2017). Effect of dietary inclusion of *Polyalthia longifolia* leaf meal as phytobiotic compared with antibiotics on the nutrient retention, immune response and serum biochemistry of broiler chicken. *Greener Journal of Agricultural Sciences*. 7(3):74-81
- 5. Talebi, A., Asri-Rezaei, S., Rozeh-Chai, R and Sahraei, R. (2005). Comparative studies on haematological values of broiler strains (Ross, Cobb, Arbo-acres and Arian). International Journal of Poultry Science, 4(8):573-579.
- 6. Aldi-Hachesoo, B., Talebi, A and Asri-Rezaei, S. (2012).Comparative study on blood profiles of indigenous and Ross-308 broiler breeders. Global Veterinary Journal 7:238-241.
- 7. Duncan, D.B. (1955). Multiple range and multiple F-test. Biometrics 11(1):1-42.
- 8. Iyayi.E.A. (1994). Supplemental effect of low and high cyanide cassava on the performance, nutrient digestibility and serum metabolites of growing pigs. Journal of Agricultural Tropics and Sub-tropics. 95:199-205.
- Alagbe, J.O. (2017). Performance, blood profile and carcass evaluation of growing grass cutters fed diets supplemented with matured *Polyalthia longifolia* leaf meal. *Scholarly Journal of Agricultural Science*. 7(2):44-49.
- Olatunji, A.K., Alagbe, J.O and Hammed, M.A. (2015). Effects of varying levels of *Moringa olifera* leaf meal on performance and blood profile of weaner rabbits. *International Journal of Science and Research*. 5(6):803-806.
- 11. Alagbe, J.O and Soares, D.M. (2018). Effects of feeding different levels of *Azolla pinnata, Polyalthia longifolia, Tithonia diversifolia, Moringa olifera, Azadiracta indica* leaf meal infusion as an organic supplement on the performance and nutrient retention of growing grass cutters. *Greener Journal of Agricultural Sciences*. 8(1):01-11.

- 12. Ojewuyi, O.B., Ajiboye, T.O., Adebanjo, E.O., Balogun, A and Mohammed, A.O. (2014). Proximate composition, phytochemical and mineral contents of young and mature *Polyalthia longifolia* Sonn. Leaves. Fountain Journal of Natural and Applied Sciences, 3(1):10-1
- 13. Alagbe, J.O. (2017) effect of Miadasan as a dietary supplement on performance, carcass characteristic and blood profile of broiler chicken. *Scholarly Journal of Agricultural Science*. 7(2):27-33.
- 14. Olafadehan, O.A., Oluwafemi, R.A and Alagbe, J.O. (2020). Performance, haemato-biochemical parameters of broiler chicks administered Rolfe (*Daniellia oliveri*) leaf extract as an antibiotic alternative. Advances in Research and Reviews, 2020, 1:4.
- 15. Alagbe, J.O (2019). Proximate, mineral and phytochemical analysis of *Piliostigma thonningii* stems bark and roots. *International Journal of Biological, Physical and Chemical Studies,* 1(1): 1-7.
- 16. Praeteek, Dexit., Tripti, Mishra., Mahesh, pal., T.S Rana and D.K. Upreti (2014). *Polyalthialongifolia* and its pharmacological activities review. *Int. Journal. Scientific andinnovative research 2014; 2(1):17-25*.
- 17. Alagbe, J.O. (2019). Effects of dried *Centella asiatica* leaf meal as a herbal feed additive on the growth performance, haematology and serum biochemistry of broiler chicken. *International Journal of Animal Research*. 3(23): 1-12.
- 18. Kar S, Maitya J. P., Samal A.C, Santra SC and Jean J S (2013) Bundashuh *Journal of and uptakeof metals in urban canopy, atmospheric arsenic sequestration. Journal Hazard Mat; 2013.*
- 19. Alagbe, J.O. (2019). Effect of different levels of dried *Delonix regia* seed meal on the performance, haematology and serum biochemistry of growing Grass cutters. *Agricultural Research and Technology Open Access Journal*. 18(4):001-006.
- 20. Cheeke, P. R. (2000). Actual and potential applications of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition. *J. Animal Sci. 77:1-10.*
- 21. Alagbe, J.O. (2020). Performance, hematology and serum biochemical parameters of weaner rabbits fed different levels of fermented *Lagenaria brevifora* whole fruit extract. *Advances in Research and Reviews*, 2020, 1:5.
- 22. Abbas, T.E. (2013). The use of *Moringa oleifera* in poultry diets. Turkish *Journal of Veterinary and Animal Science. 37: 492-496*
- Alagbe, J.O and Oluwafemi, R.A. (2019). Performance and haematological parameters of broiler chicks gives different levels of dried lemon grass (*Cymbopogon citratus*) and garlic (*Allium sativum*) extract. *Research in: Agricultural and Veterinary Sciences*. 3(2): 102 – 111.
- 24. Adisa, R.M., Choudhary, E.A., Adenoye, G.A. and Olorunsogo, O.O. (2010). Hypoglycaemic and biochemical properties of Cnestis ferruginea. *Afr. J. Tradit. Complement Altern Med. 7: 185-194.*
- 25. Nair, R., Shukla, V and Chanda, S (2009). Assessment of P. longifolia var. pendula for hypoglycemic and antihyperglycemic activity. J. Clin. and Daigonistic Res 3:116-121
- 26. A.O.A.C. (2000). Association of Official Analytical Chemists. Official Methods of Analysis 19th Edition Washington, D.C Pages 69-77.
- 27. Sofowora, A. (1993). Medicinal plants and traditional medicine. Spectrum Books Ltd, Ibadan, Nigeria, 224-227.
- 28. Harbone, I. B (1973) A guide to modern techniques to plant analysis. Chapman and hall, New York, USA 2nd Edition.
- 29. Nse Abasi, N.E., Mary, E.W., Uduak, A and Edem, E.A.O (2014). Haematological parameters and factors affecting their values. Journal of Agricultural Science, 2(1): 37-47.
- 30. Isaac, L. J., Abah, G., Akpan, B and Ekaette, I.U (2013). Haematological properties of different breeds and sexes of rabbits. Proceedings of the 18th Annual Conference of Animal Science Association of Nigeria. (Pg. 24-27).
- 31. Yakhkeshi, S., Rahimi, S and Gharib, S. K. (2011). The effects of comparison of herbal extracts, antibiotic, probiotic and organic cid on serum, immune response, GIT microbial population, intestinal morphology and performance of broilers. Journal of Medicinal Plants. 10 (37): 81-95
- 32. Mohammad, E, Mosad, A.S., Mohammad, S.M and Adel, H. (2016). Growth performance, immune response, blood parameters and nutrient digestibility of broiler chickens as affected by dietary supplementation of garlic extract. Alexandria Journal of Veterinary Sciences. 59(2):50-64
- 33. Iwuji, T.C and Herbert, U. (2012). Haematological and serum biochemical characteristics of rabbits fed diets containing Garciniola kola seed meal (p. 87-89). Proceedings of 37th Annual Conference of Nigerian Society of Animal Production.
- 34. Togun, V.A., Oseni, B.S.A., Ogundipe, A., Arewa, T.R, Hammed, A.A and Ajonijebu, D. (2007). Effects of chronic lead administration on the haematological parameters of rabbits- A preliminary study. Proceedings of the 41st Conference of the Agricultural Society of Nigeria.